Compare commits

...

No commits in common. "master" and "new-api" have entirely different histories.

427 changed files with 13496 additions and 148953 deletions

View File

@ -1 +0,0 @@
test/gtest-1.11.0

View File

@ -1,47 +0,0 @@
---
# BasedOnStyle: Google
AccessModifierOffset: -1
ConstructorInitializerIndentWidth: 4
AlignEscapedNewlinesLeft: true
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakTemplateDeclarations: true
AlwaysBreakBeforeMultilineStrings: true
BreakBeforeBinaryOperators: false
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BinPackParameters: true
ColumnLimit: 80
ConstructorInitializerAllOnOneLineOrOnePerLine: true
DerivePointerBinding: true
ExperimentalAutoDetectBinPacking: false
IndentCaseLabels: true
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCSpaceBeforeProtocolList: false
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 60
PenaltyBreakString: 1000
PenaltyBreakFirstLessLess: 120
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerBindsToType: true
SpacesBeforeTrailingComments: 2
Cpp11BracedListStyle: true
Standard: Cpp11
IndentWidth: 2
TabWidth: 8
UseTab: Never
BreakBeforeBraces: Attach
IndentFunctionDeclarationAfterType: true
SpacesInParentheses: false
SpacesInAngles: false
SpaceInEmptyParentheses: false
SpacesInCStyleCastParentheses: false
SpaceAfterControlStatementKeyword: true
SpaceBeforeAssignmentOperators: true
ContinuationIndentWidth: 4
...

View File

@ -1,50 +0,0 @@
# CodeDocs.xyz Configuration File
# Optional project name, if left empty the GitHub repository name will be used.
PROJECT_NAME =
# One or more directories and files that contain example code to be included.
EXAMPLE_PATH =
# One or more directories and files to exclude from documentation generation.
# Use relative paths with respect to the repository root directory.
EXCLUDE = test/gtest-1.8.0/
# One or more wildcard patterns to exclude files and directories from document
# generation.
EXCLUDE_PATTERNS =
# One or more symbols to exclude from document generation. Symbols can be
# namespaces, classes, or functions.
EXCLUDE_SYMBOLS =
# Override the default parser (language) used for each file extension.
EXTENSION_MAPPING =
# Set the wildcard patterns used to filter out the source-files.
# If left blank the default is:
# *.c, *.cc, *.cxx, *.cpp, *.c++, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl,
# *.idl, *.ddl, *.odl, *.h, *.hh, *.hxx, *.hpp, *.h++, *.cs, *.d, *.php,
# *.php4, *.php5, *.phtml, *.inc, *.m, *.markdown, *.md, *.mm, *.dox, *.py,
# *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf, *.qsf, *.as and *.js.
FILE_PATTERNS =
# Hide undocumented class members.
HIDE_UNDOC_MEMBERS =
# Hide undocumented classes.
HIDE_UNDOC_CLASSES =
# Specify a markdown page whose contents should be used as the main page
# (index.html). This will override a page marked as \mainpage. For example, a
# README.md file usually serves as a useful main page.
USE_MDFILE_AS_MAINPAGE = README.md
# Specify external repository to link documentation with.
# This is similar to Doxygen's TAGFILES option, but will automatically link to
# tags of other repositories already using CodeDocs. List each repository to
# link with by giving its location in the form of owner/repository.
# For example:
# TAGLINKS = doxygen/doxygen CodeDocs/osg
# Note: these repositories must already be built on CodeDocs.
TAGLINKS =

View File

@ -1,11 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "monthly"
groups:
github-actions:
patterns:
- "*"

View File

@ -1,141 +0,0 @@
name: Github PR
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
workflow_dispatch:
permissions: read-all
defaults:
run:
shell: bash
jobs:
cmake-build:
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
cxx_standard: [11, 17, 20]
build: [static, shared]
googletest: [build, system]
generator: ["Default Generator", "MinGW Makefiles"]
exclude:
- os: ubuntu-latest
cxx_standard: 11
googletest: system
- os: macos-latest
build: shared
- os: macos-latest
generator: "MinGW Makefiles"
- os: ubuntu-latest
generator: "MinGW Makefiles"
- os: macos-latest
googletest: system
- os: windows-latest
googletest: system
env:
YAML_BUILD_SHARED_LIBS: ${{ matrix.build == 'shared' && 'ON' || 'OFF' }}
YAML_USE_SYSTEM_GTEST: ${{ matrix.googletest == 'system' && 'ON' || 'OFF' }}
CMAKE_GENERATOR: >-
${{format(matrix.generator != 'Default Generator' && '-G "{0}"' || '', matrix.generator)}}
CMAKE_INSTALL_PREFIX: "${{ github.workspace }}/install-prefix"
CMAKE_BUILD_TYPE: Debug
CMAKE_CXX_FLAGS_DEBUG: ${{ matrix.googletest == 'build' && '-g -D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC' || '-g' }}
runs-on: ${{ matrix.os }}
steps:
- uses: awalsh128/cache-apt-pkgs-action@latest
if: matrix.os == 'ubuntu-latest'
with:
packages: googletest libgmock-dev libgtest-dev
version: 1.0
- uses: actions/checkout@v4
- name: Configure
run: |
cmake \
${{ env.CMAKE_GENERATOR }} \
-S "${{ github.workspace }}" \
-B build \
-D CMAKE_CXX_STANDARD=${{ matrix.cxx_standard }} \
-D CMAKE_INSTALL_PREFIX="${{ env.CMAKE_INSTALL_PREFIX }}" \
-D CMAKE_BUILD_TYPE=${{ env.CMAKE_BUILD_TYPE }} \
-D CMAKE_CXX_FLAGS_DEBUG="${{ env.CMAKE_CXX_FLAGS_DEBUG }}" \
-D YAML_BUILD_SHARED_LIBS=${{ env.YAML_BUILD_SHARED_LIBS }} \
-D YAML_USE_SYSTEM_GTEST=${{ env.YAML_USE_SYSTEM_GTEST }} \
-D YAML_CPP_BUILD_TESTS=ON
- name: Build
run: |
cmake \
--build build \
--config ${{ env.CMAKE_BUILD_TYPE }} \
--verbose \
--parallel
- name: Run Tests
shell: bash
run: |
ctest \
--test-dir build \
--build-config ${{ env.CMAKE_BUILD_TYPE }} \
--output-on-failure \
--verbose
- name: Install
run: cmake --install build --config ${{ env.CMAKE_BUILD_TYPE }}
- name: Configure CMake package test
run: |
cmake \
${{ env.CMAKE_GENERATOR }} \
-S "${{ github.workspace }}/test/cmake" \
-B consumer-build \
-D CMAKE_BUILD_TYPE=${{ env.CMAKE_BUILD_TYPE }} \
-D CMAKE_PREFIX_PATH="${{ env.CMAKE_INSTALL_PREFIX }}"
- name: Build CMake package test
run: |
cmake \
--build consumer-build \
--config ${{ env.CMAKE_BUILD_TYPE }} \
--verbose
bazel-build:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Build
run: |
cd "${{ github.workspace }}"
bazel build :all
- name: Test
run: |
cd "${{ github.workspace }}"
bazel test test
bzlmod-build:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Build
shell: bash
run: |
cd "${{ github.workspace }}"
bazel build --enable_bzlmod :all
- name: Test
shell: bash
run: |
cd "${{ github.workspace }}"
bazel test --enable_bzlmod test

View File

@ -1,19 +0,0 @@
name: Bazel Release
on:
release:
types: [published]
jobs:
# A release archive is required for bzlmod
# See: https://blog.bazel.build/2023/02/15/github-archive-checksum.html
bazel-release-archive:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11 # v4.1.1
- run: git archive $GITHUB_REF -o "yaml-cpp-${GITHUB_REF:10}.tar.gz"
- run: gh release upload ${GITHUB_REF:10} "yaml-cpp-${GITHUB_REF:10}.tar.gz"
env:
GH_TOKEN: ${{ github.token }}

3
.gitignore vendored
View File

@ -1,3 +0,0 @@
build/
/tags
/bazel-*

4
.hgeol Normal file
View File

@ -0,0 +1,4 @@
**.h = native
**.c = native
**.cpp = native
**.txt = native

2
.hgignore Normal file
View File

@ -0,0 +1,2 @@
syntax: glob

View File

@ -1,21 +0,0 @@
yaml_cpp_defines = select({
# On Windows, ensure static linking is used.
"@platforms//os:windows": ["YAML_CPP_STATIC_DEFINE", "YAML_CPP_NO_CONTRIB"],
"//conditions:default": [],
})
cc_library(
name = "yaml-cpp_internal",
visibility = ["//:__subpackages__"],
strip_include_prefix = "src",
hdrs = glob(["src/**/*.h"]),
)
cc_library(
name = "yaml-cpp",
visibility = ["//visibility:public"],
includes = ["include"],
hdrs = glob(["include/**/*.h"]),
srcs = glob(["src/**/*.cpp", "src/**/*.h"]),
defines = yaml_cpp_defines,
)

View File

@ -1,213 +1,285 @@
# 3.5 is actually available almost everywhere, but this a good minimum.
# 3.14 as the upper policy limit avoids CMake deprecation warnings.
cmake_minimum_required(VERSION 3.4...3.14)
# enable MSVC_RUNTIME_LIBRARY target property
# see https://cmake.org/cmake/help/latest/policy/CMP0091.html
if(POLICY CMP0091)
cmake_policy(SET CMP0091 NEW)
###
### CMake settings
###
## Due to Mac OSX we need to keep compatibility with CMake 2.6
# see http://www.cmake.org/Wiki/CMake_Policies
cmake_minimum_required(VERSION 2.6)
# see http://www.cmake.org/cmake/help/cmake-2-8-docs.html#policy:CMP0012
if(POLICY CMP0012)
cmake_policy(SET CMP0012 OLD)
endif()
# see http://www.cmake.org/cmake/help/cmake-2-8-docs.html#policy:CMP0015
if(POLICY CMP0015)
cmake_policy(SET CMP0015 OLD)
endif()
project(YAML_CPP VERSION 0.8.0 LANGUAGES CXX)
set(YAML_CPP_MAIN_PROJECT OFF)
if(CMAKE_SOURCE_DIR STREQUAL PROJECT_SOURCE_DIR)
set(YAML_CPP_MAIN_PROJECT ON)
endif()
include(CMakePackageConfigHelpers)
include(CMakeDependentOption)
include(CheckCXXCompilerFlag)
include(GNUInstallDirs)
include(CTest)
option(YAML_CPP_BUILD_CONTRIB "Enable yaml-cpp contrib in library" ON)
option(YAML_CPP_BUILD_TOOLS "Enable parse tools" ON)
option(YAML_BUILD_SHARED_LIBS "Build yaml-cpp shared library" ${BUILD_SHARED_LIBS})
option(YAML_CPP_INSTALL "Enable generation of yaml-cpp install targets" ${YAML_CPP_MAIN_PROJECT})
option(YAML_CPP_FORMAT_SOURCE "Format source" ${YAML_CPP_MAIN_PROJECT})
option(YAML_CPP_DISABLE_UNINSTALL "Disable uninstallation of yaml-cpp" OFF)
option(YAML_USE_SYSTEM_GTEST "Use system googletest if found" OFF)
option(YAML_ENABLE_PIC "Use Position-Independent Code " ON)
cmake_dependent_option(YAML_CPP_BUILD_TESTS
"Enable yaml-cpp tests" OFF
"BUILD_TESTING;YAML_CPP_MAIN_PROJECT" OFF)
cmake_dependent_option(YAML_MSVC_SHARED_RT
"MSVC: Build yaml-cpp with shared runtime libs (/MD)" ON
"CMAKE_SYSTEM_NAME MATCHES Windows" OFF)
set(YAML_CPP_INSTALL_CMAKEDIR "${CMAKE_INSTALL_LIBDIR}/cmake/yaml-cpp"
CACHE STRING "Path to install the CMake package to")
if (YAML_CPP_FORMAT_SOURCE)
find_program(YAML_CPP_CLANG_FORMAT_EXE NAMES clang-format)
endif()
###
### Project settings
###
project(YAML_CPP)
if (YAML_BUILD_SHARED_LIBS)
set(yaml-cpp-type SHARED)
set(yaml-cpp-label-postfix "shared")
set(YAML_CPP_VERSION_MAJOR "0")
set(YAML_CPP_VERSION_MINOR "5")
set(YAML_CPP_VERSION_PATCH "0")
set(YAML_CPP_VERSION "${YAML_CPP_VERSION_MAJOR}.${YAML_CPP_VERSION_MINOR}.${YAML_CPP_VERSION_PATCH}")
enable_testing()
###
### Project options
###
## Project stuff
option(YAML_CPP_BUILD_TOOLS "Enable testing and parse tools" ON)
option(YAML_CPP_BUILD_CONTRIB "Enable contrib stuff in library" ON)
## Build options
# --> General
# see http://www.cmake.org/cmake/help/cmake2.6docs.html#variable:BUILD_SHARED_LIBS
# http://www.cmake.org/cmake/help/cmake2.6docs.html#command:add_library
option(BUILD_SHARED_LIBS "Build Shared Libraries" OFF)
# --> Apple
option(APPLE_UNIVERSAL_BIN "Apple: Build universal binary" OFF)
# --> Microsoft Visual C++
# see http://msdn.microsoft.com/en-us/library/aa278396(v=VS.60).aspx
# http://msdn.microsoft.com/en-us/library/2kzt1wy3(v=VS.71).aspx
option(MSVC_SHARED_RT "MSVC: Build with shared runtime libs (/MD)" ON)
option(MSVC_STHREADED_RT "MSVC: Build with single-threaded static runtime libs (/ML until VS .NET 2003)" OFF)
###
### Sources, headers, directories and libs
###
set(header_directory "include/yaml-cpp/")
file(GLOB sources "src/[a-zA-Z]*.cpp")
file(GLOB_RECURSE public_headers "include/yaml-cpp/[a-zA-Z]*.h")
file(GLOB private_headers "src/[a-zA-Z]*.h")
if(YAML_CPP_BUILD_CONTRIB)
file(GLOB contrib_sources "src/contrib/[a-zA-Z]*.cpp")
file(GLOB contrib_public_headers "include/yaml-cpp/contrib/[a-zA-Z]*.h")
file(GLOB contrib_private_headers "src/contrib/[a-zA-Z]*.h")
else()
set(yaml-cpp-type STATIC)
set(yaml-cpp-label-postfix "static")
add_definitions(-DYAML_CPP_NO_CONTRIB)
endif()
set(build-shared $<BOOL:${YAML_BUILD_SHARED_LIBS}>)
set(build-windows-dll $<AND:$<BOOL:${CMAKE_HOST_WIN32}>,${build-shared}>)
set(not-msvc $<NOT:$<CXX_COMPILER_ID:MSVC>>)
set(msvc-shared_rt $<BOOL:${YAML_MSVC_SHARED_RT}>)
if (NOT DEFINED CMAKE_MSVC_RUNTIME_LIBRARY)
set(CMAKE_MSVC_RUNTIME_LIBRARY
MultiThreaded$<$<CONFIG:Debug>:Debug>$<${msvc-shared_rt}:DLL>)
if(VERBOSE)
message(STATUS "sources: ${sources}")
message(STATUS "public_headers: ${public_headers}")
message(STATUS "private_headers: ${private_headers}")
message(STATUS "contrib_sources: ${contrib_sources}")
message(STATUS "contrib_public_headers: ${contrib_public_headers}")
message(STATUS "contrib_private_headers: ${contrib_private_headers}")
endif()
set(contrib-pattern "src/contrib/*.cpp")
set(src-pattern "src/*.cpp")
if (CMAKE_VERSION VERSION_GREATER 3.12)
list(INSERT contrib-pattern 0 CONFIGURE_DEPENDS)
list(INSERT src-pattern 0 CONFIGURE_DEPENDS)
include_directories(${YAML_CPP_SOURCE_DIR}/src)
include_directories(${YAML_CPP_SOURCE_DIR}/include)
find_package(Boost REQUIRED)
include_directories(${Boost_INCLUDE_DIRS})
###
### General compilation settings
###
if(BUILD_SHARED_LIBS)
set(LABEL_SUFFIX "shared")
else()
set(LABEL_SUFFIX "static")
endif()
file(GLOB yaml-cpp-contrib-sources ${contrib-pattern})
file(GLOB yaml-cpp-sources ${src-pattern})
set(msvc-rt $<TARGET_PROPERTY:MSVC_RUNTIME_LIBRARY>)
set(msvc-rt-mtd-static $<STREQUAL:${msvc-rt},MultiThreadedDebug>)
set(msvc-rt-mt-static $<STREQUAL:${msvc-rt},MultiThreaded>)
set(msvc-rt-mtd-dll $<STREQUAL:${msvc-rt},MultiThreadedDebugDLL>)
set(msvc-rt-mt-dll $<STREQUAL:${msvc-rt},MultiThreadedDLL>)
set(backport-msvc-runtime $<VERSION_LESS:${CMAKE_VERSION},3.15>)
add_library(yaml-cpp ${yaml-cpp-type} "")
add_library(yaml-cpp::yaml-cpp ALIAS yaml-cpp)
set_property(TARGET yaml-cpp
PROPERTY
MSVC_RUNTIME_LIBRARY ${CMAKE_MSVC_RUNTIME_LIBRARY})
set_property(TARGET yaml-cpp
PROPERTY
CXX_STANDARD_REQUIRED ON)
if (NOT YAML_BUILD_SHARED_LIBS)
set_property(TARGET yaml-cpp PROPERTY POSITION_INDEPENDENT_CODE ${YAML_ENABLE_PIC})
if(APPLE)
if(APPLE_UNIVERSAL_BIN)
set(CMAKE_OSX_ARCHITECTURES ppc;i386)
endif()
endif()
target_include_directories(yaml-cpp
PUBLIC
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
PRIVATE
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src>)
if (NOT DEFINED CMAKE_CXX_STANDARD)
set_target_properties(yaml-cpp
PROPERTIES
CXX_STANDARD 11)
if(IPHONE)
set(CMAKE_OSX_SYSROOT "iphoneos4.2")
set(CMAKE_OSX_ARCHITECTURES "armv6;armv7")
endif()
if(YAML_CPP_MAIN_PROJECT)
target_compile_options(yaml-cpp
PRIVATE
$<${not-msvc}:-Wall -Wextra -Wshadow -Weffc++ -Wno-long-long>
$<${not-msvc}:-pedantic -pedantic-errors>)
if(WIN32)
if(BUILD_SHARED_LIBS)
add_definitions(-D${PROJECT_NAME}_DLL) # use or build Windows DLL
endif()
if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
set(CMAKE_INSTALL_PREFIX "C:/")
endif()
endif()
target_compile_options(yaml-cpp
PRIVATE
$<$<AND:${backport-msvc-runtime},${msvc-rt-mtd-static}>:-MTd>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mt-static}>:-MT>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mtd-dll}>:-MDd>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mt-dll}>:-MD>
# GCC specialities
if(CMAKE_COMPILER_IS_GNUCXX)
### General stuff
if(WIN32)
set(CMAKE_SHARED_LIBRARY_PREFIX "") # DLLs do not have a "lib" prefix
set(CMAKE_IMPORT_LIBRARY_PREFIX "") # same for DLL import libs
set(CMAKE_LINK_DEF_FILE_FLAG "") # CMake workaround (2.8.3)
endif()
# /wd4127 = disable warning C4127 "conditional expression is constant"
# http://msdn.microsoft.com/en-us/library/6t66728h.aspx
# /wd4355 = disable warning C4355 "'this' : used in base member initializer list
# http://msdn.microsoft.com/en-us/library/3c594ae3.aspx
$<$<CXX_COMPILER_ID:MSVC>:/W3 /wd4127 /wd4355>)
target_compile_definitions(yaml-cpp
PUBLIC
$<$<NOT:$<BOOL:${YAML_BUILD_SHARED_LIBS}>>:YAML_CPP_STATIC_DEFINE>
PRIVATE
$<${build-windows-dll}:${PROJECT_NAME}_DLL>
$<$<NOT:$<BOOL:${YAML_CPP_BUILD_CONTRIB}>>:YAML_CPP_NO_CONTRIB>)
target_sources(yaml-cpp
PRIVATE
$<$<BOOL:${YAML_CPP_BUILD_CONTRIB}>:${yaml-cpp-contrib-sources}>
${yaml-cpp-sources})
if (NOT DEFINED CMAKE_DEBUG_POSTFIX)
set(CMAKE_DEBUG_POSTFIX "d")
### Project stuff
if(NOT CMAKE_CONFIGURATION_TYPES AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release)
endif()
#
set(CMAKE_CXX_FLAGS_RELEASE "-O2")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O2 -g")
set(CMAKE_CXX_FLAGS_DEBUG "-g")
set(CMAKE_CXX_FLAGS_MINSIZEREL "-Os")
#
set(GCC_EXTRA_OPTIONS "")
#
set(FLAG_TESTED "-Wextra")
check_cxx_compiler_flag(${FLAG_TESTED} FLAG_WEXTRA)
if(FLAG_WEXTRA)
set(GCC_EXTRA_OPTIONS "${GCC_EXTRA_OPTIONS} ${FLAG_TESTED}")
endif()
#
set(CMAKE_CXX_FLAGS "-Wall ${GCC_EXTRA_OPTIONS} -pedantic -Wno-long-long ${CMAKE_CXX_FLAGS}")
#
add_custom_target(debuggable $(MAKE) clean
COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR}
COMMENT "Adjusting settings for debug compilation"
VERBATIM)
add_custom_target(releasable $(MAKE) clean
COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR}
COMMENT "Adjusting settings for release compilation"
VERBATIM)
endif()
# Microsoft VisualC++ specialities
if(MSVC)
### General stuff
# a) Change MSVC runtime library settings (/MD[d], /MT[d], /ML[d] (single-threaded until VS 2003))
# plus set lib suffix for later use and project label accordingly
# see http://msdn.microsoft.com/en-us/library/aa278396(v=VS.60).aspx
# http://msdn.microsoft.com/en-us/library/2kzt1wy3(v=VS.71).aspx
set(LIB_RT_SUFFIX "md") # CMake defaults to /MD for MSVC
set(LIB_RT_OPTION "/MD")
#
if(NOT MSVC_SHARED_RT) # User wants to have static runtime libraries (/MT, /ML)
if(MSVC_STHREADED_RT) # User wants to have old single-threaded static runtime libraries
set(LIB_RT_SUFFIX "ml")
set(LIB_RT_OPTION "/ML")
if(NOT ${MSVC_VERSION} LESS 1400)
message(FATAL_ERROR "Single-threaded static runtime libraries (/ML) only available until VS .NET 2003 (7.1).")
endif()
else()
set(LIB_RT_SUFFIX "mt")
set(LIB_RT_OPTION "/MT")
endif()
# correct linker options
foreach(flag_var CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
foreach(config_name "" DEBUG RELEASE MINSIZEREL RELWITHDEBINFO)
set(var_name "${flag_var}")
if(NOT "${config_name}" STREQUAL "")
set(var_name "${var_name}_${config_name}")
endif()
string(REPLACE "/MD" "${LIB_RT_OPTION}" ${var_name} "${${var_name}}")
endforeach()
endforeach()
endif()
#
set(LABEL_SUFFIX "${LABEL_SUFFIX} ${LIB_RT_SUFFIX}")
# b) Change prefix for static libraries
set(CMAKE_STATIC_LIBRARY_PREFIX "lib") # to distinguish static libraries from DLL import libs
# c) Correct suffixes for static libraries
if(NOT BUILD_SHARED_LIBS)
### General stuff
set(LIB_TARGET_SUFFIX "${LIB_SUFFIX}${LIB_RT_SUFFIX}")
endif()
### Project stuff
# /W3 = set warning level; see http://msdn.microsoft.com/en-us/library/thxezb7y.aspx
# /wd4127 = disable warning C4127 "conditional expression is constant"; see http://msdn.microsoft.com/en-us/library/6t66728h.aspx
# /wd4355 = disable warning C4355 "'this' : used in base member initializer list"; http://msdn.microsoft.com/en-us/library/3c594ae3.aspx
set(CMAKE_CXX_FLAGS "/W3 /wd4127 /wd4355 /D_SCL_SECURE_NO_WARNINGS ${CMAKE_CXX_FLAGS}")
endif()
###
### General install settings
###
if(WIN32)
set(_library_dir bin) # .dll are in PATH, like executables
else()
set(_library_dir lib)
endif()
set(INCLUDE_INSTALL_ROOT_DIR include)
set(INCLUDE_INSTALL_DIR ${INCLUDE_INSTALL_ROOT_DIR}/yaml-cpp)
set(LIB_INSTALL_DIR "${_library_dir}${LIB_SUFFIX}")
set(_INSTALL_DESTINATIONS
RUNTIME DESTINATION bin
LIBRARY DESTINATION ${LIB_INSTALL_DIR}
ARCHIVE DESTINATION "lib${LIB_SUFFIX}"
)
###
### Library
###
add_library(yaml-cpp
${sources}
${public_headers}
${private_headers}
${contrib_sources}
${contrib_public_headers}
${contrib_private_headers}
)
set_target_properties(yaml-cpp PROPERTIES
VERSION "${PROJECT_VERSION}"
SOVERSION "${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}"
PROJECT_LABEL "yaml-cpp ${yaml-cpp-label-postfix}"
DEBUG_POSTFIX "${CMAKE_DEBUG_POSTFIX}")
VERSION "${YAML_CPP_VERSION}"
SOVERSION "${YAML_CPP_VERSION_MAJOR}.${YAML_CPP_VERSION_MINOR}"
PROJECT_LABEL "yaml-cpp ${LABEL_SUFFIX}"
)
set(EXPORT_TARGETS yaml-cpp::yaml-cpp)
configure_package_config_file(
"${PROJECT_SOURCE_DIR}/yaml-cpp-config.cmake.in"
"${PROJECT_BINARY_DIR}/yaml-cpp-config.cmake"
INSTALL_DESTINATION "${YAML_CPP_INSTALL_CMAKEDIR}"
PATH_VARS CMAKE_INSTALL_INCLUDEDIR CMAKE_INSTALL_LIBDIR)
unset(EXPORT_TARGETS)
write_basic_package_version_file(
"${PROJECT_BINARY_DIR}/yaml-cpp-config-version.cmake"
COMPATIBILITY AnyNewerVersion)
configure_file(yaml-cpp.pc.in yaml-cpp.pc @ONLY)
if (YAML_CPP_INSTALL)
install(TARGETS yaml-cpp
EXPORT yaml-cpp-targets
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
install(DIRECTORY ${PROJECT_SOURCE_DIR}/include/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
FILES_MATCHING PATTERN "*.h")
install(EXPORT yaml-cpp-targets
NAMESPACE yaml-cpp::
DESTINATION "${YAML_CPP_INSTALL_CMAKEDIR}")
install(FILES
"${PROJECT_BINARY_DIR}/yaml-cpp-config.cmake"
"${PROJECT_BINARY_DIR}/yaml-cpp-config-version.cmake"
DESTINATION "${YAML_CPP_INSTALL_CMAKEDIR}")
install(FILES "${PROJECT_BINARY_DIR}/yaml-cpp.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
if(IPHONE)
set_target_properties(yaml-cpp PROPERTIES
XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET "3.0"
)
endif()
if(YAML_CPP_BUILD_TESTS)
add_subdirectory(test)
if(MSVC)
if(NOT BUILD_SHARED_LIBS)
# correct library names
set_target_properties(yaml-cpp PROPERTIES
DEBUG_POSTFIX "${LIB_TARGET_SUFFIX}d"
RELEASE_POSTFIX "${LIB_TARGET_SUFFIX}"
MINSIZEREL_POSTFIX "${LIB_TARGET_SUFFIX}"
RELWITHDEBINFO_POSTFIX "${LIB_TARGET_SUFFIX}"
)
endif()
endif()
install(TARGETS yaml-cpp ${_INSTALL_DESTINATIONS})
install(
DIRECTORY ${header_directory}
DESTINATION ${INCLUDE_INSTALL_DIR}
FILES_MATCHING PATTERN "*.h"
)
if(UNIX)
set(PC_FILE ${CMAKE_BINARY_DIR}/yaml-cpp.pc)
configure_file("yaml-cpp.pc.cmake" ${PC_FILE} @ONLY)
install(FILES ${PC_FILE} DESTINATION ${LIB_INSTALL_DIR}/pkgconfig)
endif()
###
### Extras
###
if(YAML_CPP_BUILD_TOOLS)
add_subdirectory(util)
endif()
if (YAML_CPP_FORMAT_SOURCE AND YAML_CPP_CLANG_FORMAT_EXE)
add_custom_target(format
COMMAND clang-format --style=file -i $<TARGET_PROPERTY:yaml-cpp,SOURCES>
COMMAND_EXPAND_LISTS
COMMENT "Running clang-format"
WORKING_DIRECTORY "${PROJECT_SOURCE_DIR}"
VERBATIM)
endif()
# uninstall target
if(YAML_CPP_INSTALL AND NOT YAML_CPP_DISABLE_UNINSTALL AND NOT TARGET uninstall)
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/cmake_uninstall.cmake.in"
"${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake"
IMMEDIATE @ONLY)
add_custom_target(uninstall
COMMAND ${CMAKE_COMMAND} -P ${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake)
add_subdirectory(test)
add_subdirectory(util)
endif()

View File

@ -1,26 +0,0 @@
# Style
This project is formatted with [clang-format][fmt] using the style file at the root of the repository. Please run clang-format before sending a pull request.
In general, try to follow the style of surrounding code. We mostly follow the [Google C++ style guide][cpp-style].
Commit messages should be in the imperative mood, as described in the [Git contributing file][git-contrib]:
> Describe your changes in imperative mood, e.g. "make xyzzy do frotz"
> instead of "[This patch] makes xyzzy do frotz" or "[I] changed xyzzy
> to do frotz", as if you are giving orders to the codebase to change
> its behaviour.
[fmt]: http://clang.llvm.org/docs/ClangFormat.html
[cpp-style]: https://google.github.io/styleguide/cppguide.html
[git-contrib]: http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
# Tests
Please verify the tests pass by configuring CMake with `-D YAML_CPP_BUILD_TESTS=ON` and running the target `test/yaml-cpp-tests`.
If you are adding functionality, add tests accordingly. Note that the "spec tests" are reserved for examples directly from the YAML spec, so if you have new examples, put them in other test files.
# Pull request process
Every pull request undergoes a code review. Unfortunately, github's code review process isn't great, but we'll manage. During the code review, if you make changes, add new commits to the pull request for each change. Once the code review is complete, rebase against the master branch and squash into a single commit.

View File

@ -1,14 +0,0 @@
"""
yaml-cpp is a YAML parser and emitter in c++ matching the YAML specification.
"""
module(
name = "yaml-cpp",
compatibility_level = 1,
version = "0.8.0",
)
bazel_dep(name = "platforms", version = "0.0.7")
bazel_dep(name = "rules_cc", version = "0.0.8")
bazel_dep(name = "googletest", version = "1.14.0", dev_dependency = True)

114
MODULE.bazel.lock generated
View File

@ -1,114 +0,0 @@
{
"lockFileVersion": 11,
"registryFileHashes": {
"https://bcr.bazel.build/bazel_registry.json": "8a28e4aff06ee60aed2a8c281907fb8bcbf3b753c91fb5a5c57da3215d5b3497",
"https://bcr.bazel.build/modules/abseil-cpp/20210324.2/MODULE.bazel": "7cd0312e064fde87c8d1cd79ba06c876bd23630c83466e9500321be55c96ace2",
"https://bcr.bazel.build/modules/abseil-cpp/20211102.0/MODULE.bazel": "70390338f7a5106231d20620712f7cccb659cd0e9d073d1991c038eb9fc57589",
"https://bcr.bazel.build/modules/abseil-cpp/20230125.1/MODULE.bazel": "89047429cb0207707b2dface14ba7f8df85273d484c2572755be4bab7ce9c3a0",
"https://bcr.bazel.build/modules/abseil-cpp/20230125.1/source.json": "06cc0842d241da0c5edc755edb3c7d0d008d304330e57ecf2d6449fb0b633a82",
"https://bcr.bazel.build/modules/apple_support/1.5.0/MODULE.bazel": "50341a62efbc483e8a2a6aec30994a58749bd7b885e18dd96aa8c33031e558ef",
"https://bcr.bazel.build/modules/apple_support/1.5.0/source.json": "eb98a7627c0bc486b57f598ad8da50f6625d974c8f723e9ea71bd39f709c9862",
"https://bcr.bazel.build/modules/bazel_features/1.11.0/MODULE.bazel": "f9382337dd5a474c3b7d334c2f83e50b6eaedc284253334cf823044a26de03e8",
"https://bcr.bazel.build/modules/bazel_features/1.11.0/source.json": "c9320aa53cd1c441d24bd6b716da087ad7e4ff0d9742a9884587596edfe53015",
"https://bcr.bazel.build/modules/bazel_skylib/1.0.3/MODULE.bazel": "bcb0fd896384802d1ad283b4e4eb4d718eebd8cb820b0a2c3a347fb971afd9d8",
"https://bcr.bazel.build/modules/bazel_skylib/1.2.1/MODULE.bazel": "f35baf9da0efe45fa3da1696ae906eea3d615ad41e2e3def4aeb4e8bc0ef9a7a",
"https://bcr.bazel.build/modules/bazel_skylib/1.3.0/MODULE.bazel": "20228b92868bf5cfc41bda7afc8a8ba2a543201851de39d990ec957b513579c5",
"https://bcr.bazel.build/modules/bazel_skylib/1.4.1/MODULE.bazel": "a0dcb779424be33100dcae821e9e27e4f2901d9dfd5333efe5ac6a8d7ab75e1d",
"https://bcr.bazel.build/modules/bazel_skylib/1.6.1/MODULE.bazel": "8fdee2dbaace6c252131c00e1de4b165dc65af02ea278476187765e1a617b917",
"https://bcr.bazel.build/modules/bazel_skylib/1.6.1/source.json": "082ed5f9837901fada8c68c2f3ddc958bb22b6d654f71dd73f3df30d45d4b749",
"https://bcr.bazel.build/modules/buildozer/7.1.2/MODULE.bazel": "2e8dd40ede9c454042645fd8d8d0cd1527966aa5c919de86661e62953cd73d84",
"https://bcr.bazel.build/modules/buildozer/7.1.2/source.json": "c9028a501d2db85793a6996205c8de120944f50a0d570438fcae0457a5f9d1f8",
"https://bcr.bazel.build/modules/googletest/1.11.0/MODULE.bazel": "3a83f095183f66345ca86aa13c58b59f9f94a2f81999c093d4eeaa2d262d12f4",
"https://bcr.bazel.build/modules/googletest/1.14.0/MODULE.bazel": "cfbcbf3e6eac06ef9d85900f64424708cc08687d1b527f0ef65aa7517af8118f",
"https://bcr.bazel.build/modules/googletest/1.14.0/source.json": "2478949479000fdd7de9a3d0107ba2c85bb5f961c3ecb1aa448f52549ce310b5",
"https://bcr.bazel.build/modules/platforms/0.0.4/MODULE.bazel": "9b328e31ee156f53f3c416a64f8491f7eb731742655a47c9eec4703a71644aee",
"https://bcr.bazel.build/modules/platforms/0.0.5/MODULE.bazel": "5733b54ea419d5eaf7997054bb55f6a1d0b5ff8aedf0176fef9eea44f3acda37",
"https://bcr.bazel.build/modules/platforms/0.0.6/MODULE.bazel": "ad6eeef431dc52aefd2d77ed20a4b353f8ebf0f4ecdd26a807d2da5aa8cd0615",
"https://bcr.bazel.build/modules/platforms/0.0.7/MODULE.bazel": "72fd4a0ede9ee5c021f6a8dd92b503e089f46c227ba2813ff183b71616034814",
"https://bcr.bazel.build/modules/platforms/0.0.9/MODULE.bazel": "4a87a60c927b56ddd67db50c89acaa62f4ce2a1d2149ccb63ffd871d5ce29ebc",
"https://bcr.bazel.build/modules/platforms/0.0.9/source.json": "cd74d854bf16a9e002fb2ca7b1a421f4403cda29f824a765acd3a8c56f8d43e6",
"https://bcr.bazel.build/modules/protobuf/21.7/MODULE.bazel": "a5a29bb89544f9b97edce05642fac225a808b5b7be74038ea3640fae2f8e66a7",
"https://bcr.bazel.build/modules/protobuf/21.7/source.json": "bbe500720421e582ff2d18b0802464205138c06056f443184de39fbb8187b09b",
"https://bcr.bazel.build/modules/protobuf/3.19.0/MODULE.bazel": "6b5fbb433f760a99a22b18b6850ed5784ef0e9928a72668b66e4d7ccd47db9b0",
"https://bcr.bazel.build/modules/protobuf/3.19.6/MODULE.bazel": "9233edc5e1f2ee276a60de3eaa47ac4132302ef9643238f23128fea53ea12858",
"https://bcr.bazel.build/modules/rules_cc/0.0.1/MODULE.bazel": "cb2aa0747f84c6c3a78dad4e2049c154f08ab9d166b1273835a8174940365647",
"https://bcr.bazel.build/modules/rules_cc/0.0.2/MODULE.bazel": "6915987c90970493ab97393024c156ea8fb9f3bea953b2f3ec05c34f19b5695c",
"https://bcr.bazel.build/modules/rules_cc/0.0.6/MODULE.bazel": "abf360251023dfe3efcef65ab9d56beefa8394d4176dd29529750e1c57eaa33f",
"https://bcr.bazel.build/modules/rules_cc/0.0.8/MODULE.bazel": "964c85c82cfeb6f3855e6a07054fdb159aced38e99a5eecf7bce9d53990afa3e",
"https://bcr.bazel.build/modules/rules_cc/0.0.9/MODULE.bazel": "836e76439f354b89afe6a911a7adf59a6b2518fafb174483ad78a2a2fde7b1c5",
"https://bcr.bazel.build/modules/rules_cc/0.0.9/source.json": "1f1ba6fea244b616de4a554a0f4983c91a9301640c8fe0dd1d410254115c8430",
"https://bcr.bazel.build/modules/rules_java/4.0.0/MODULE.bazel": "5a78a7ae82cd1a33cef56dc578c7d2a46ed0dca12643ee45edbb8417899e6f74",
"https://bcr.bazel.build/modules/rules_java/7.6.5/MODULE.bazel": "481164be5e02e4cab6e77a36927683263be56b7e36fef918b458d7a8a1ebadb1",
"https://bcr.bazel.build/modules/rules_java/7.6.5/source.json": "a805b889531d1690e3c72a7a7e47a870d00323186a9904b36af83aa3d053ee8d",
"https://bcr.bazel.build/modules/rules_jvm_external/4.4.2/MODULE.bazel": "a56b85e418c83eb1839819f0b515c431010160383306d13ec21959ac412d2fe7",
"https://bcr.bazel.build/modules/rules_jvm_external/4.4.2/source.json": "a075731e1b46bc8425098512d038d416e966ab19684a10a34f4741295642fc35",
"https://bcr.bazel.build/modules/rules_license/0.0.3/MODULE.bazel": "627e9ab0247f7d1e05736b59dbb1b6871373de5ad31c3011880b4133cafd4bd0",
"https://bcr.bazel.build/modules/rules_license/0.0.7/MODULE.bazel": "088fbeb0b6a419005b89cf93fe62d9517c0a2b8bb56af3244af65ecfe37e7d5d",
"https://bcr.bazel.build/modules/rules_license/0.0.7/source.json": "355cc5737a0f294e560d52b1b7a6492d4fff2caf0bef1a315df5a298fca2d34a",
"https://bcr.bazel.build/modules/rules_pkg/0.7.0/MODULE.bazel": "df99f03fc7934a4737122518bb87e667e62d780b610910f0447665a7e2be62dc",
"https://bcr.bazel.build/modules/rules_pkg/0.7.0/source.json": "c2557066e0c0342223ba592510ad3d812d4963b9024831f7f66fd0584dd8c66c",
"https://bcr.bazel.build/modules/rules_proto/4.0.0/MODULE.bazel": "a7a7b6ce9bee418c1a760b3d84f83a299ad6952f9903c67f19e4edd964894e06",
"https://bcr.bazel.build/modules/rules_proto/5.3.0-21.7/MODULE.bazel": "e8dff86b0971688790ae75528fe1813f71809b5afd57facb44dad9e8eca631b7",
"https://bcr.bazel.build/modules/rules_proto/5.3.0-21.7/source.json": "d57902c052424dfda0e71646cb12668d39c4620ee0544294d9d941e7d12bc3a9",
"https://bcr.bazel.build/modules/rules_python/0.10.2/MODULE.bazel": "cc82bc96f2997baa545ab3ce73f196d040ffb8756fd2d66125a530031cd90e5f",
"https://bcr.bazel.build/modules/rules_python/0.22.1/MODULE.bazel": "26114f0c0b5e93018c0c066d6673f1a2c3737c7e90af95eff30cfee38d0bbac7",
"https://bcr.bazel.build/modules/rules_python/0.22.1/source.json": "57226905e783bae7c37c2dd662be078728e48fa28ee4324a7eabcafb5a43d014",
"https://bcr.bazel.build/modules/rules_python/0.4.0/MODULE.bazel": "9208ee05fd48bf09ac60ed269791cf17fb343db56c8226a720fbb1cdf467166c",
"https://bcr.bazel.build/modules/stardoc/0.5.1/MODULE.bazel": "1a05d92974d0c122f5ccf09291442580317cdd859f07a8655f1db9a60374f9f8",
"https://bcr.bazel.build/modules/stardoc/0.5.1/source.json": "a96f95e02123320aa015b956f29c00cb818fa891ef823d55148e1a362caacf29",
"https://bcr.bazel.build/modules/upb/0.0.0-20220923-a547704/MODULE.bazel": "7298990c00040a0e2f121f6c32544bab27d4452f80d9ce51349b1a28f3005c43",
"https://bcr.bazel.build/modules/upb/0.0.0-20220923-a547704/source.json": "f1ef7d3f9e0e26d4b23d1c39b5f5de71f584dd7d1b4ef83d9bbba6ec7a6a6459",
"https://bcr.bazel.build/modules/zlib/1.2.11/MODULE.bazel": "07b389abc85fdbca459b69e2ec656ae5622873af3f845e1c9d80fe179f3effa0",
"https://bcr.bazel.build/modules/zlib/1.2.12/MODULE.bazel": "3b1a8834ada2a883674be8cbd36ede1b6ec481477ada359cd2d3ddc562340b27",
"https://bcr.bazel.build/modules/zlib/1.3.1.bcr.3/MODULE.bazel": "af322bc08976524477c79d1e45e241b6efbeb918c497e8840b8ab116802dda79",
"https://bcr.bazel.build/modules/zlib/1.3.1.bcr.3/source.json": "2be409ac3c7601245958cd4fcdff4288be79ed23bd690b4b951f500d54ee6e7d"
},
"selectedYankedVersions": {},
"moduleExtensions": {
"@@apple_support~//crosstool:setup.bzl%apple_cc_configure_extension": {
"general": {
"bzlTransitiveDigest": "PjIds3feoYE8SGbbIq2SFTZy3zmxeO2tQevJZNDo7iY=",
"usagesDigest": "+hz7IHWN6A1oVJJWNDB6yZRG+RYhF76wAYItpAeIUIg=",
"recordedFileInputs": {},
"recordedDirentsInputs": {},
"envVariables": {},
"generatedRepoSpecs": {
"local_config_apple_cc_toolchains": {
"bzlFile": "@@apple_support~//crosstool:setup.bzl",
"ruleClassName": "_apple_cc_autoconf_toolchains",
"attributes": {}
},
"local_config_apple_cc": {
"bzlFile": "@@apple_support~//crosstool:setup.bzl",
"ruleClassName": "_apple_cc_autoconf",
"attributes": {}
}
},
"recordedRepoMappingEntries": [
[
"apple_support~",
"bazel_tools",
"bazel_tools"
]
]
}
},
"@@platforms//host:extension.bzl%host_platform": {
"general": {
"bzlTransitiveDigest": "xelQcPZH8+tmuOHVjL9vDxMnnQNMlwj0SlvgoqBkm4U=",
"usagesDigest": "pCYpDQmqMbmiiPI1p2Kd3VLm5T48rRAht5WdW0X2GlA=",
"recordedFileInputs": {},
"recordedDirentsInputs": {},
"envVariables": {},
"generatedRepoSpecs": {
"host_platform": {
"bzlFile": "@@platforms//host:extension.bzl",
"ruleClassName": "host_platform_repo",
"attributes": {}
}
},
"recordedRepoMappingEntries": []
}
}
}
}

View File

@ -1,86 +0,0 @@
# yaml-cpp ![Build Status](https://github.com/jbeder/yaml-cpp/actions/workflows/build.yml/badge.svg) [![Documentation](https://codedocs.xyz/jbeder/yaml-cpp.svg)](https://codedocs.xyz/jbeder/yaml-cpp/)
`yaml-cpp` is a [YAML](http://www.yaml.org/) parser and emitter in C++ matching the [YAML 1.2 spec](http://www.yaml.org/spec/1.2/spec.html).
## Usage
See [Tutorial](https://github.com/jbeder/yaml-cpp/wiki/Tutorial) and [How to Emit YAML](https://github.com/jbeder/yaml-cpp/wiki/How-To-Emit-YAML) for reference. For the old API (until 0.5.0), see [How To Parse A Document](https://github.com/jbeder/yaml-cpp/wiki/How-To-Parse-A-Document-(Old-API)).
## Any Problems?
If you find a bug, post an [issue](https://github.com/jbeder/yaml-cpp/issues)! If you have questions about how to use yaml-cpp, please post it on http://stackoverflow.com and tag it [`yaml-cpp`](http://stackoverflow.com/questions/tagged/yaml-cpp).
## How to Build
`yaml-cpp` uses [CMake](http://www.cmake.org) to support cross-platform building. Install [CMake](http://www.cmake.org) _(Resources -> Download)_ before proceeding. The basic steps to build are:
**Note:** If you don't use the provided installer for your platform, make sure that you add `CMake`'s bin folder to your path.
#### 1. Navigate into the source directory, create build folder and run `CMake`:
```sh
mkdir build
cd build
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=on|OFF] ..
```
* The `generator` option is the build system you'd like to use. Run `cmake` without arguments to see a full list of available generators.
* On Windows, you might use "Visual Studio 12 2013" (VS 2013 32-bits), or "Visual Studio 14 2015 Win64" (VS 2015 64-bits).
* On OS X, you might use "Xcode".
* On a UNIX-like system, omit the option (for a Makefile).
* `yaml-cpp` builds a static library by default, you may want to build a shared library by specifying `-DYAML_BUILD_SHARED_LIBS=ON`.
* [Debug mode of the GNU standard C++
library](https://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode.html)
can be used when both `yaml-cpp` and client code is compiled with the
`_GLIBCXX_DEBUG` flag (e.g. by calling CMake with `-D
CMAKE_CXX_FLAGS_DEBUG='-g -D_GLIBCXX_DEBUG'` option).
Note that for `yaml-cpp` unit tests to run successfully, the _GoogleTest_
library also must be built with this flag, i.e. the system one cannot be
used (the _YAML_USE_SYSTEM_GTEST_ CMake option must be _OFF_, which is the
default).
* For more options on customizing the build, see the [CMakeLists.txt](https://github.com/jbeder/yaml-cpp/blob/master/CMakeLists.txt) file.
#### 2. Build it!
* The command you'll need to run depends on the generator you chose earlier.
**Note:** To clean up, just remove the `build` directory.
## How to Integrate it within your project using CMake
You can use for example FetchContent :
```cmake
include(FetchContent)
FetchContent_Declare(
yaml-cpp
GIT_REPOSITORY https://github.com/jbeder/yaml-cpp.git
GIT_TAG <tag_name> # Can be a tag (yaml-cpp-x.x.x), a commit hash, or a branch name (master)
)
FetchContent_MakeAvailable(yaml-cpp)
target_link_libraries(YOUR_LIBRARY PUBLIC yaml-cpp::yaml-cpp) # The library or executable that require yaml-cpp library
```
## Recent Releases
[yaml-cpp 0.8.0](https://github.com/jbeder/yaml-cpp/releases/tag/yaml-cpp-0.8.0) released!
[yaml-cpp 0.3.0](https://github.com/jbeder/yaml-cpp/releases/tag/release-0.3.0) is still available if you want the old API.
**The old API will stop receiving bugfixes in 2026.** The 0.3.x versions provide the old API, and 0.5.x and above all provide the new API.
# API Documentation
The autogenerated API reference is hosted on [CodeDocs](https://codedocs.xyz/jbeder/yaml-cpp/index.html)
# Third Party Integrations
The following projects are not officially supported:
- [Qt wrapper](https://gist.github.com/brcha/d392b2fe5f1e427cc8a6)
- [UnrealEngine Wrapper](https://github.com/jwindgassen/UnrealYAML)

View File

@ -1,13 +0,0 @@
# Security Policy
## Supported Versions
Security updates are applied only to the latest release.
## Reporting a Vulnerability
If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it at [security advisory](https://github.com/jbeder/yaml-cpp/security/advisories/new).
This project is maintained by a team of volunteers on a reasonable-effort basis. As such, vulnerabilities will be disclosed in a best effort base.

View File

@ -1,21 +0,0 @@
if(NOT EXISTS "@CMAKE_BINARY_DIR@/install_manifest.txt")
message(FATAL_ERROR "Cannot find install manifest: @CMAKE_BINARY_DIR@/install_manifest.txt")
endif()
file(READ "@CMAKE_BINARY_DIR@/install_manifest.txt" files)
string(REGEX REPLACE "\n" ";" files "${files}")
foreach(file ${files})
message(STATUS "Uninstalling $ENV{DESTDIR}${file}")
if(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}")
exec_program(
"@CMAKE_COMMAND@" ARGS "-E remove \"$ENV{DESTDIR}${file}\""
OUTPUT_VARIABLE rm_out
RETURN_VALUE rm_retval
)
if(NOT "${rm_retval}" STREQUAL 0)
message(FATAL_ERROR "Problem when removing $ENV{DESTDIR}${file}")
endif()
else(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}")
message(STATUS "File $ENV{DESTDIR}${file} does not exist.")
endif()
endforeach()

View File

@ -1,52 +0,0 @@
# The following is a list of breaking changes to yaml-cpp, by version #
# New API #
## HEAD ##
* Throws an exception when trying to parse a negative number as an unsigned integer.
* Supports the `as<int8_t>`/`as<uint8_t>`, which throws an exception when the value exceeds the range of `int8_t`/`uint8_t`.
## 0.6.0 ##
* Requires C++11.
## 0.5.3 ##
_none_
## 0.5.2 ##
_none_
## 0.5.1 ##
* `Node::clear` was replaced by `Node::reset`, which takes an optional node, similar to smart pointers.
## 0.5.0 ##
Initial version of the new API.
# Old API #
## 0.3.0 ##
_none_
## 0.2.7 ##
* `YAML::Binary` now takes `const unsigned char *` for the binary data (instead of `const char *`).
## 0.2.6 ##
* `Node::GetType()` is now `Node::Type()`, and returns an enum `NodeType::value`, where:
> > ` struct NodeType { enum value { Null, Scalar, Sequence, Map }; }; `
* `Node::GetTag()` is now `Node::Tag()`
* `Node::Identity()` is removed, and `Node::IsAlias()` and `Node::IsReferenced()` have been merged into `Node::IsAliased()`. The reason: there's no reason to distinguish an alias node from its anchor - whichever happens to be emitted first will be the anchor, and the rest will be aliases.
* `Node::Read<T>` is now `Node::to<T>`. This wasn't a documented function, so it shouldn't break anything.
* `Node`'s comparison operators (for example, `operator == (const Node&, const T&)`) have all been removed. These weren't documented either (they were just used for the tests), so this shouldn't break anything either.
* The emitter no longer produces the document start by default - if you want it, you can supply it with the manipulator `YAML::BeginDoc`.
## 0.2.5 ##
This wiki was started with v0.2.5.

View File

@ -1,226 +0,0 @@
## Contents ##
# Basic Emitting #
The model for emitting YAML is `std::ostream` manipulators. A `YAML::Emitter` objects acts as an output stream, and its output can be retrieved through the `c_str()` function (as in `std::string`). For a simple example:
```cpp
#include "yaml-cpp/yaml.h"
int main()
{
YAML::Emitter out;
out << "Hello, World!";
std::cout << "Here's the output YAML:\n" << out.c_str(); // prints "Hello, World!"
return 0;
}
```
# Simple Lists and Maps #
A `YAML::Emitter` object acts as a state machine, and we use manipulators to move it between states. Here's a simple sequence:
```cpp
YAML::Emitter out;
out << YAML::BeginSeq;
out << "eggs";
out << "bread";
out << "milk";
out << YAML::EndSeq;
```
produces
```yaml
- eggs
- bread
- milk
```
A simple map:
```cpp
YAML::Emitter out;
out << YAML::BeginMap;
out << YAML::Key << "name";
out << YAML::Value << "Ryan Braun";
out << YAML::Key << "position";
out << YAML::Value << "LF";
out << YAML::EndMap;
```
produces
```yaml
name: Ryan Braun
position: LF
```
These elements can, of course, be nested:
```cpp
YAML::Emitter out;
out << YAML::BeginMap;
out << YAML::Key << "name";
out << YAML::Value << "Barack Obama";
out << YAML::Key << "children";
out << YAML::Value << YAML::BeginSeq << "Sasha" << "Malia" << YAML::EndSeq;
out << YAML::EndMap;
```
produces
```yaml
name: Barack Obama
children:
- Sasha
- Malia
```
# Using Manipulators #
To deviate from standard formatting, you can use manipulators to modify the output format. For example,
```cpp
YAML::Emitter out;
out << YAML::Literal << "A\n B\n C";
```
produces
```yaml
|
A
B
C
```
and
```cpp
YAML::Emitter out;
out << YAML::Flow;
out << YAML::BeginSeq << 2 << 3 << 5 << 7 << 11 << YAML::EndSeq;
```
produces
```yaml
[2, 3, 5, 7, 11]
```
Comments act like manipulators:
```cpp
YAML::Emitter out;
out << YAML::BeginMap;
out << YAML::Key << "method";
out << YAML::Value << "least squares";
out << YAML::Comment("should we change this method?");
out << YAML::EndMap;
```
produces
```yaml
method: least squares # should we change this method?
```
And so do aliases/anchors:
```cpp
YAML::Emitter out;
out << YAML::BeginSeq;
out << YAML::Anchor("fred");
out << YAML::BeginMap;
out << YAML::Key << "name" << YAML::Value << "Fred";
out << YAML::Key << "age" << YAML::Value << "42";
out << YAML::EndMap;
out << YAML::Alias("fred");
out << YAML::EndSeq;
```
produces
```yaml
- &fred
name: Fred
age: 42
- *fred
```
# STL Containers, and Other Overloads #
We overload `operator <<` for `std::vector`, `std::list`, and `std::map`, so you can write stuff like:
{% raw %}
```cpp
std::vector <int> squares = {1, 4, 9, 16};
std::map <std::string, int> ages = {{"Daniel", 26}, {"Jesse", 24}};
YAML::Emitter out;
out << YAML::BeginSeq;
out << YAML::Flow << squares;
out << ages;
out << YAML::EndSeq;
```
{% endraw %}
produces
```yaml
- [1, 4, 9, 16]
-
Daniel: 26
Jesse: 24
```
Of course, you can overload `operator <<` for your own types:
```cpp
struct Vec3 { int x; int y; int z; };
YAML::Emitter& operator << (YAML::Emitter& out, const Vec3& v) {
out << YAML::Flow;
out << YAML::BeginSeq << v.x << v.y << v.z << YAML::EndSeq;
return out;
}
```
and it'll play nicely with everything else.
# Using Existing Nodes #
We also overload `operator << ` for `YAML::Node`s in both APIs, so you can output existing Nodes. Of course, Nodes in the old API are read-only, so it's tricky to emit them if you want to modify them. So use the new API!
# Output Encoding #
The output is always UTF-8. By default, yaml-cpp will output as much as it can without escaping any characters. If you want to restrict the output to ASCII, use the manipulator `YAML::EscapeNonAscii`:
```cpp
emitter.SetOutputCharset(YAML::EscapeNonAscii);
```
# Lifetime of Manipulators #
Manipulators affect the **next** output item in the stream. If that item is a `BeginSeq` or `BeginMap`, the manipulator lasts until the corresponding `EndSeq` or `EndMap`. (However, within that sequence or map, you can override the manipulator locally, etc.; in effect, there's a "manipulator stack" behind the scenes.)
If you want to permanently change a setting, there are global setters corresponding to each manipulator, e.g.:
```cpp
YAML::Emitter out;
out.SetIndent(4);
out.SetMapStyle(YAML::Flow);
```
# When Something Goes Wrong #
If something goes wrong when you're emitting a document, it must be something like forgetting a `YAML::EndSeq`, or a misplaced `YAML::Key`. In this case, emitting silently fails (no more output is emitted) and an error flag is set. For example:
```cpp
YAML::Emitter out;
assert(out.good());
out << YAML::Key;
assert(!out.good());
std::cout << "Emitter error: " << out.GetLastError() << "\n";
```

View File

@ -1,265 +0,0 @@
_The following describes the old API. For the new API, see the [Tutorial](https://github.com/jbeder/yaml-cpp/wiki/Tutorial)._
## Contents ##
# Basic Parsing #
The parser accepts streams, not file names, so you need to first load the file. Since a YAML file can contain many documents, you can grab them one-by-one. A simple way to parse a YAML file might be:
```
#include <fstream>
#include "yaml-cpp/yaml.h"
int main()
{
std::ifstream fin("test.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
while(parser.GetNextDocument(doc)) {
// ...
}
return 0;
}
```
# Reading From the Document #
Suppose we have a document consisting only of a scalar. We can read that scalar like this:
```
YAML::Node doc; // let's say we've already parsed this document
std::string scalar;
doc >> scalar;
std::cout << "That scalar was: " << scalar << std::endl;
```
How about sequences? Let's say our document now consists only of a sequences of scalars. We can use an iterator:
```
YAML::Node doc; // already parsed
for(YAML::Iterator it=doc.begin();it!=doc.end();++it) {
std::string scalar;
*it >> scalar;
std::cout << "Found scalar: " << scalar << std::endl;
}
```
... or we can just loop through:
```
YAML::Node doc; // already parsed
for(unsigned i=0;i<doc.size();i++) {
std::string scalar;
doc[i] >> scalar;
std::cout << "Found scalar: " << scalar << std::endl;
}
```
And finally maps. For now, let's say our document is a map with all keys/values being scalars. Again, we can iterate:
```
YAML::Node doc; // already parsed
for(YAML::Iterator it=doc.begin();it!=doc.end();++it) {
std::string key, value;
it.first() >> key;
it.second() >> value;
std::cout << "Key: " << key << ", value: " << value << std::endl;
}
```
Note that dereferencing a map iterator is undefined; instead, use the `first` and `second` methods to get the key and value nodes, respectively.
Alternatively, we can pick off the values one-by-one, if we know the keys:
```
YAML::Node doc; // already parsed
std::string name;
doc["name"] >> name;
int age;
doc["age"] >> age;
std::cout << "Found entry with name '" << name << "' and age '" << age << "'\n";
```
One thing to be keep in mind: reading a map by key (as immediately above) requires looping through all entries until we find the right key, which is an O(n) operation. So if you're reading the entire map this way, it'll be O(n^2). For small n, this isn't a big deal, but I wouldn't recommend reading maps with a very large number of entries (>100, say) this way.
## Optional Keys ##
If you try to access a key that doesn't exist, `yaml-cpp` throws an exception (see [When Something Goes Wrong](https://github.com/jbeder/yaml-cpp/wiki/How-To-Parse-A-Document-(Old-API)#When_Something_Goes_Wrong). If you have optional keys, it's often easier to use `FindValue` instead of `operator[]`:
```
YAML::Node doc; // already parsed
if(const YAML::Node *pName = doc.FindValue("name")) {
std::string name;
*pName >> name;
std::cout << "Key 'name' exists, with value '" << name << "'\n";
} else {
std::cout << "Key 'name' doesn't exist\n";
}
```
# Getting More Complicated #
The above three methods can be combined to read from an arbitrary document. But we can make life a lot easier. Suppose we're reading 3-vectors (i.e., vectors with three components), so we've got a structure looking like this:
```
struct Vec3 {
float x, y, z;
};
```
We can read this in one operation by overloading the extraction (>>) operator:
```
void operator >> (const YAML::Node& node, Vec3& v)
{
node[0] >> v.x;
node[1] >> v.y;
node[2] >> v.z;
}
// now it's a piece of cake to read it
YAML::Node doc; // already parsed
Vec3 v;
doc >> v;
std::cout << "Here's the vector: (" << v.x << ", " << v.y << ", " << v.z << ")\n";
```
# A Complete Example #
Here's a complete example of how to parse a complex YAML file:
`monsters.yaml`
```
- name: Ogre
position: [0, 5, 0]
powers:
- name: Club
damage: 10
- name: Fist
damage: 8
- name: Dragon
position: [1, 0, 10]
powers:
- name: Fire Breath
damage: 25
- name: Claws
damage: 15
- name: Wizard
position: [5, -3, 0]
powers:
- name: Acid Rain
damage: 50
- name: Staff
damage: 3
```
`main.cpp`
```
#include "yaml-cpp/yaml.h"
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
// our data types
struct Vec3 {
float x, y, z;
};
struct Power {
std::string name;
int damage;
};
struct Monster {
std::string name;
Vec3 position;
std::vector <Power> powers;
};
// now the extraction operators for these types
void operator >> (const YAML::Node& node, Vec3& v) {
node[0] >> v.x;
node[1] >> v.y;
node[2] >> v.z;
}
void operator >> (const YAML::Node& node, Power& power) {
node["name"] >> power.name;
node["damage"] >> power.damage;
}
void operator >> (const YAML::Node& node, Monster& monster) {
node["name"] >> monster.name;
node["position"] >> monster.position;
const YAML::Node& powers = node["powers"];
for(unsigned i=0;i<powers.size();i++) {
Power power;
powers[i] >> power;
monster.powers.push_back(power);
}
}
int main()
{
std::ifstream fin("monsters.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
parser.GetNextDocument(doc);
for(unsigned i=0;i<doc.size();i++) {
Monster monster;
doc[i] >> monster;
std::cout << monster.name << "\n";
}
return 0;
}
```
# When Something Goes Wrong #
... we throw an exception (all exceptions are derived from `YAML::Exception`). If there's a parsing exception (i.e., a malformed YAML document), we throw a `YAML::ParserException`:
```
try {
std::ifstream fin("test.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
parser.GetNextDocument(doc);
// do stuff
} catch(YAML::ParserException& e) {
std::cout << e.what() << "\n";
}
```
If you make a programming error (say, trying to read a scalar from a sequence node, or grabbing a key that doesn't exist), we throw some kind of `YAML::RepresentationException`. To prevent this, you can check what kind of node something is:
```
YAML::Node node;
YAML::NodeType::value type = node.Type(); // should be:
// YAML::NodeType::Null
// YAML::NodeType::Scalar
// YAML::NodeType::Sequence
// YAML::NodeType::Map
```
# Note about copying `YAML::Node` #
Currently `YAML::Node` is non-copyable, so you need to do something like
```
const YAML::Node& node = doc["whatever"];
```
This is intended behavior. If you want to copy a node, use the `Clone` function:
```
std::auto_ptr<YAML::Node> pCopy = myOtherNode.Clone();
```
The intent is that if you'd like to keep a `YAML::Node` around for longer than the document will stay in scope, you can clone it and store it as long as you like.

View File

@ -1,18 +0,0 @@
# Encodings and `yaml-cpp` #
`yaml-cpp` will parse any file as specified by the [YAML 1.2 spec](http://www.yaml.org/spec/1.2/spec.html#id2570322). Internally, it stores all strings in UTF-8, and representation is done with UTF-8. This means that in
```
std::string str;
node >> str;
```
`str` will be UTF-8. Similarly, if you're accessing a map by string key, you need to pass the key in UTF-8. If your application uses a different encoding, you need to convert to and from UTF-8 to work with `yaml-cpp`. (It's possible we'll add some small conversion functions, but for now it's restricted.)
---
For convenience, Richard Weeks has kindly provided a google gadget that converts Unicode to a string literal. It's a Google Gadget, so unfortunately it does not work on GitHub. Patches welcome to port it to a usable format here:
```
<wiki:gadget url="http://hosting.gmodules.com/ig/gadgets/file/111180078345548400783/c-style-utf8-encoder.xml"/>
```

View File

@ -1,201 +0,0 @@
# Introduction #
A typical example, loading a configuration file, might look like this:
```cpp
YAML::Node config = YAML::LoadFile("config.yaml");
if (config["lastLogin"]) {
std::cout << "Last logged in: " << config["lastLogin"].as<DateTime>() << "\n";
}
const std::string username = config["username"].as<std::string>();
const std::string password = config["password"].as<std::string>();
login(username, password);
config["lastLogin"] = getCurrentDateTime();
std::ofstream fout("config.yaml");
fout << config;
```
# Basic Parsing and Node Editing #
All nodes in a YAML document (including the root) are represented by `YAML::Node`. You can check what kind it is:
```cpp
YAML::Node node = YAML::Load("[1, 2, 3]");
assert(node.Type() == YAML::NodeType::Sequence);
assert(node.IsSequence()); // a shortcut!
```
Collection nodes (sequences and maps) act somewhat like STL vectors and maps:
```cpp
YAML::Node primes = YAML::Load("[2, 3, 5, 7, 11]");
for (std::size_t i=0;i<primes.size();i++) {
std::cout << primes[i].as<int>() << "\n";
}
// or:
for (YAML::const_iterator it=primes.begin();it!=primes.end();++it) {
std::cout << it->as<int>() << "\n";
}
primes.push_back(13);
assert(primes.size() == 6);
```
and
```cpp
YAML::Node lineup = YAML::Load("{1B: Prince Fielder, 2B: Rickie Weeks, LF: Ryan Braun}");
for(YAML::const_iterator it=lineup.begin();it!=lineup.end();++it) {
std::cout << "Playing at " << it->first.as<std::string>() << " is " << it->second.as<std::string>() << "\n";
}
lineup["RF"] = "Corey Hart";
lineup["C"] = "Jonathan Lucroy";
assert(lineup.size() == 5);
```
Querying for keys does **not** create them automatically (this makes handling optional map entries very easy)
```cpp
YAML::Node node = YAML::Load("{name: Brewers, city: Milwaukee}");
if (node["name"]) {
std::cout << node["name"].as<std::string>() << "\n";
}
if (node["mascot"]) {
std::cout << node["mascot"].as<std::string>() << "\n";
}
assert(node.size() == 2); // the previous call didn't create a node
```
If you're not sure what kind of data you're getting, you can query the type of a node:
```cpp
switch (node.Type()) {
case Null: // ...
case Scalar: // ...
case Sequence: // ...
case Map: // ...
case Undefined: // ...
}
```
or ask directly whether it's a particular type, e.g.:
```cpp
if (node.IsSequence()) {
// ...
}
```
# Building Nodes #
You can build `YAML::Node` from scratch:
```cpp
YAML::Node node; // starts out as null
node["key"] = "value"; // it now is a map node
node["seq"].push_back("first element"); // node["seq"] automatically becomes a sequence
node["seq"].push_back("second element");
node["mirror"] = node["seq"][0]; // this creates an alias
node["seq"][0] = "1st element"; // this also changes node["mirror"]
node["mirror"] = "element #1"; // and this changes node["seq"][0] - they're really the "same" node
node["self"] = node; // you can even create self-aliases
node[node["mirror"]] = node["seq"]; // and strange loops :)
```
The above node is now:
```yaml
&1
key: value
&2 seq: [&3 "element #1", second element]
mirror: *3
self: *1
*3 : *2
```
# How Sequences Turn Into Maps #
Sequences can be turned into maps by asking for non-integer keys. For example,
```cpp
YAML::Node node = YAML::Load("[1, 2, 3]");
node[1] = 5; // still a sequence, [1, 5, 3]
node.push_back(-3) // still a sequence, [1, 5, 3, -3]
node["key"] = "value"; // now it's a map! {0: 1, 1: 5, 2: 3, 3: -3, key: value}
```
Indexing a sequence node by an index that's not in its range will _usually_ turn it into a map, but if the index is one past the end of the sequence, then the sequence will grow by one to accommodate it. (That's the **only** exception to this rule.) For example,
```cpp
YAML::Node node = YAML::Load("[1, 2, 3]");
node[3] = 4; // still a sequence, [1, 2, 3, 4]
node[10] = 10; // now it's a map! {0: 1, 1: 2, 2: 3, 3: 4, 10: 10}
```
# Converting To/From Native Data Types #
Yaml-cpp has built-in conversion to and from most built-in data types, as well as `std::vector`, `std::list`, and `std::map`. The following examples demonstrate when those conversions are used:
```cpp
YAML::Node node = YAML::Load("{pi: 3.14159, [0, 1]: integers}");
// this needs the conversion from Node to double
double pi = node["pi"].as<double>();
// this needs the conversion from double to Node
node["e"] = 2.71828;
// this needs the conversion from Node to std::vector<int> (*not* the other way around!)
std::vector<int> v;
v.push_back(0);
v.push_back(1);
std::string str = node[v].as<std::string>();
```
To use yaml-cpp with your own data types, you need to specialize the YAML::convert<> template class. For example, suppose you had a simple `Vec3` class:
```cpp
struct Vec3 { double x, y, z; /* etc - make sure you have overloaded operator== */ };
```
You could write
```cpp
namespace YAML {
template<>
struct convert<Vec3> {
static Node encode(const Vec3& rhs) {
Node node;
node.push_back(rhs.x);
node.push_back(rhs.y);
node.push_back(rhs.z);
return node;
}
static bool decode(const Node& node, Vec3& rhs) {
if(!node.IsSequence() || node.size() != 3) {
return false;
}
rhs.x = node[0].as<double>();
rhs.y = node[1].as<double>();
rhs.z = node[2].as<double>();
return true;
}
};
}
```
Then you could use `Vec3` wherever you could use any other type:
```cpp
YAML::Node node = YAML::Load("start: [1, 3, 0]");
Vec3 v = node["start"].as<Vec3>();
node["end"] = Vec3(2, -1, 0);
```

View File

@ -1 +0,0 @@
theme: jekyll-theme-slate

View File

@ -1 +0,0 @@
To learn how to use the library, see the [Tutorial](https://github.com/jbeder/yaml-cpp/wiki/Tutorial) and [How To Emit YAML](https://github.com/jbeder/yaml-cpp/wiki/How-To-Emit-YAML)

View File

@ -1,17 +1,16 @@
#ifndef ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
namespace YAML {
using anchor_t = std::size_t;
const anchor_t NullAnchor = 0;
namespace YAML
{
typedef std::size_t anchor_t;
const anchor_t NullAnchor = 0;
}
#endif // ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,71 +1,62 @@
#ifndef BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML
{
std::string EncodeBase64(const unsigned char *data, std::size_t size);
std::vector<unsigned char> DecodeBase64(const std::string& input);
class Binary {
public:
Binary(): m_unownedData(0), m_unownedSize(0) {}
Binary(const unsigned char *data_, std::size_t size_): m_unownedData(data_), m_unownedSize(size_) {}
bool owned() const { return !m_unownedData; }
std::size_t size() const { return owned() ? m_data.size() : m_unownedSize; }
const unsigned char *data() const { return owned() ? &m_data[0] : m_unownedData; }
void swap(std::vector<unsigned char>& rhs) {
if(m_unownedData) {
m_data.swap(rhs);
rhs.clear();
rhs.resize(m_unownedSize);
std::copy(m_unownedData, m_unownedData + m_unownedSize, &rhs[0]);
m_unownedData = 0;
m_unownedSize = 0;
} else {
m_data.swap(rhs);
}
}
bool operator == (const Binary& rhs) const {
const std::size_t s = size();
if(s != rhs.size())
return false;
const unsigned char *d1 = data();
const unsigned char *d2 = rhs.data();
for(std::size_t i=0;i<s;i++) {
if(*d1++ != *d2++)
return false;
}
return true;
}
bool operator != (const Binary& rhs) const {
return !(*this == rhs);
}
private:
std::vector<unsigned char> m_data;
const unsigned char *m_unownedData;
std::size_t m_unownedSize;
};
}
namespace YAML {
YAML_CPP_API std::string EncodeBase64(const unsigned char *data,
std::size_t size);
YAML_CPP_API std::vector<unsigned char> DecodeBase64(const std::string &input);
class YAML_CPP_API Binary {
public:
Binary(const unsigned char *data_, std::size_t size_)
: m_data{}, m_unownedData(data_), m_unownedSize(size_) {}
Binary() : Binary(nullptr, 0) {}
Binary(const Binary &) = default;
Binary(Binary &&) = default;
Binary &operator=(const Binary &) = default;
Binary &operator=(Binary &&) = default;
bool owned() const { return !m_unownedData; }
std::size_t size() const { return owned() ? m_data.size() : m_unownedSize; }
const unsigned char *data() const {
return owned() ? &m_data[0] : m_unownedData;
}
void swap(std::vector<unsigned char> &rhs) {
if (m_unownedData) {
m_data.swap(rhs);
rhs.clear();
rhs.resize(m_unownedSize);
std::copy(m_unownedData, m_unownedData + m_unownedSize, rhs.begin());
m_unownedData = nullptr;
m_unownedSize = 0;
} else {
m_data.swap(rhs);
}
}
bool operator==(const Binary &rhs) const {
const std::size_t s = size();
if (s != rhs.size())
return false;
const unsigned char *d1 = data();
const unsigned char *d2 = rhs.data();
for (std::size_t i = 0; i < s; i++) {
if (*d1++ != *d2++)
return false;
}
return true;
}
bool operator!=(const Binary &rhs) const { return !(*this == rhs); }
private:
std::vector<unsigned char> m_data;
const unsigned char *m_unownedData;
std::size_t m_unownedSize;
};
} // namespace YAML
#endif // BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,9 +1,7 @@
#ifndef ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
@ -11,30 +9,34 @@
#include "../anchor.h"
namespace YAML {
/**
* An object that stores and retrieves values correlating to {@link anchor_t}
* values.
*
* <p>Efficient implementation that can make assumptions about how
* {@code anchor_t} values are assigned by the {@link Parser} class.
*/
template <class T>
class AnchorDict {
public:
AnchorDict() : m_data{} {}
void Register(anchor_t anchor, T value) {
if (anchor > m_data.size()) {
m_data.resize(anchor);
namespace YAML
{
/// AnchorDict
/// . An object that stores and retrieves values correlating to anchor_t
/// values.
/// . Efficient implementation that can make assumptions about how anchor_t
/// values are assigned by the Parser class.
template <class T>
class AnchorDict
{
public:
void Register(anchor_t anchor, T value)
{
if (anchor > m_data.size())
{
m_data.resize(anchor);
}
m_data[anchor - 1] = value;
}
m_data[anchor - 1] = value;
}
T Get(anchor_t anchor) const
{
return m_data[anchor - 1];
}
private:
std::vector<T> m_data;
};
}
T Get(anchor_t anchor) const { return m_data[anchor - 1]; }
private:
std::vector<T> m_data;
};
} // namespace YAML
#endif // ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,149 +1,133 @@
#ifndef GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/mark.h"
#include <string>
namespace YAML {
class Parser;
// GraphBuilderInterface
// . Abstraction of node creation
// . pParentNode is always nullptr or the return value of one of the NewXXX()
// functions.
class GraphBuilderInterface {
public:
virtual ~GraphBuilderInterface() = 0;
// Create and return a new node with a null value.
virtual void *NewNull(const Mark &mark, void *pParentNode) = 0;
// Create and return a new node with the given tag and value.
virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) = 0;
// Create and return a new sequence node
virtual void *NewSequence(const Mark &mark, const std::string &tag,
void *pParentNode) = 0;
// Add pNode to pSequence. pNode was created with one of the NewXxx()
// functions and pSequence with NewSequence().
virtual void AppendToSequence(void *pSequence, void *pNode) = 0;
// Note that no moew entries will be added to pSequence
virtual void SequenceComplete(void *pSequence) { (void)pSequence; }
// Create and return a new map node
virtual void *NewMap(const Mark &mark, const std::string &tag,
void *pParentNode) = 0;
// Add the pKeyNode => pValueNode mapping to pMap. pKeyNode and pValueNode
// were created with one of the NewXxx() methods and pMap with NewMap().
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) = 0;
// Note that no more assignments will be made in pMap
virtual void MapComplete(void *pMap) { (void)pMap; }
// Return the node that should be used in place of an alias referencing
// pNode (pNode by default)
virtual void *AnchorReference(const Mark &mark, void *pNode) {
(void)mark;
return pNode;
namespace YAML
{
class Parser;
// GraphBuilderInterface
// . Abstraction of node creation
// . pParentNode is always NULL or the return value of one of the NewXXX()
// functions.
class GraphBuilderInterface
{
public:
// Create and return a new node with a null value.
virtual void *NewNull(const Mark& mark, void *pParentNode) = 0;
// Create and return a new node with the given tag and value.
virtual void *NewScalar(const Mark& mark, const std::string& tag, void *pParentNode, const std::string& value) = 0;
// Create and return a new sequence node
virtual void *NewSequence(const Mark& mark, const std::string& tag, void *pParentNode) = 0;
// Add pNode to pSequence. pNode was created with one of the NewXxx()
// functions and pSequence with NewSequence().
virtual void AppendToSequence(void *pSequence, void *pNode) = 0;
// Note that no moew entries will be added to pSequence
virtual void SequenceComplete(void *pSequence) {(void)pSequence;}
// Create and return a new map node
virtual void *NewMap(const Mark& mark, const std::string& tag, void *pParentNode) = 0;
// Add the pKeyNode => pValueNode mapping to pMap. pKeyNode and pValueNode
// were created with one of the NewXxx() methods and pMap with NewMap().
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) = 0;
// Note that no more assignments will be made in pMap
virtual void MapComplete(void *pMap) {(void)pMap;}
// Return the node that should be used in place of an alias referencing
// pNode (pNode by default)
virtual void *AnchorReference(const Mark& mark, void *pNode) {(void)mark; return pNode;}
};
// Typesafe wrapper for GraphBuilderInterface. Assumes that Impl defines
// Node, Sequence, and Map types. Sequence and Map must derive from Node
// (unless Node is defined as void). Impl must also implement function with
// all of the same names as the virtual functions in GraphBuilderInterface
// -- including the ones with default implementations -- but with the
// prototypes changed to accept an explicit Node*, Sequence*, or Map* where
// appropriate.
template <class Impl>
class GraphBuilder : public GraphBuilderInterface
{
public:
typedef typename Impl::Node Node;
typedef typename Impl::Sequence Sequence;
typedef typename Impl::Map Map;
GraphBuilder(Impl& impl) : m_impl(impl)
{
Map* pMap = NULL;
Sequence* pSeq = NULL;
Node* pNode = NULL;
// Type consistency checks
pNode = pMap;
pNode = pSeq;
}
GraphBuilderInterface& AsBuilderInterface() {return *this;}
virtual void *NewNull(const Mark& mark, void* pParentNode) {
return CheckType<Node>(m_impl.NewNull(mark, AsNode(pParentNode)));
}
virtual void *NewScalar(const Mark& mark, const std::string& tag, void *pParentNode, const std::string& value) {
return CheckType<Node>(m_impl.NewScalar(mark, tag, AsNode(pParentNode), value));
}
virtual void *NewSequence(const Mark& mark, const std::string& tag, void *pParentNode) {
return CheckType<Sequence>(m_impl.NewSequence(mark, tag, AsNode(pParentNode)));
}
virtual void AppendToSequence(void *pSequence, void *pNode) {
m_impl.AppendToSequence(AsSequence(pSequence), AsNode(pNode));
}
virtual void SequenceComplete(void *pSequence) {
m_impl.SequenceComplete(AsSequence(pSequence));
}
virtual void *NewMap(const Mark& mark, const std::string& tag, void *pParentNode) {
return CheckType<Map>(m_impl.NewMap(mark, tag, AsNode(pParentNode)));
}
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) {
m_impl.AssignInMap(AsMap(pMap), AsNode(pKeyNode), AsNode(pValueNode));
}
virtual void MapComplete(void *pMap) {
m_impl.MapComplete(AsMap(pMap));
}
virtual void *AnchorReference(const Mark& mark, void *pNode) {
return CheckType<Node>(m_impl.AnchorReference(mark, AsNode(pNode)));
}
private:
Impl& m_impl;
// Static check for pointer to T
template <class T, class U>
static T* CheckType(U* p) {return p;}
static Node *AsNode(void *pNode) {return static_cast<Node*>(pNode);}
static Sequence *AsSequence(void *pSeq) {return static_cast<Sequence*>(pSeq);}
static Map *AsMap(void *pMap) {return static_cast<Map*>(pMap);}
};
void *BuildGraphOfNextDocument(Parser& parser, GraphBuilderInterface& graphBuilder);
template <class Impl>
typename Impl::Node *BuildGraphOfNextDocument(Parser& parser, Impl& impl)
{
GraphBuilder<Impl> graphBuilder(impl);
return static_cast<typename Impl::Node *>(BuildGraphOfNextDocument(
parser, graphBuilder
));
}
};
// Typesafe wrapper for GraphBuilderInterface. Assumes that Impl defines
// Node, Sequence, and Map types. Sequence and Map must derive from Node
// (unless Node is defined as void). Impl must also implement function with
// all of the same names as the virtual functions in GraphBuilderInterface
// -- including the ones with default implementations -- but with the
// prototypes changed to accept an explicit Node*, Sequence*, or Map* where
// appropriate.
template <class Impl>
class GraphBuilder : public GraphBuilderInterface {
public:
typedef typename Impl::Node Node;
typedef typename Impl::Sequence Sequence;
typedef typename Impl::Map Map;
GraphBuilder(Impl &impl) : m_impl(impl) {
Map *pMap = nullptr;
Sequence *pSeq = nullptr;
Node *pNode = nullptr;
// Type consistency checks
pNode = pMap;
pNode = pSeq;
}
GraphBuilderInterface &AsBuilderInterface() { return *this; }
virtual void *NewNull(const Mark &mark, void *pParentNode) {
return CheckType<Node>(m_impl.NewNull(mark, AsNode(pParentNode)));
}
virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) {
return CheckType<Node>(
m_impl.NewScalar(mark, tag, AsNode(pParentNode), value));
}
virtual void *NewSequence(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Sequence>(
m_impl.NewSequence(mark, tag, AsNode(pParentNode)));
}
virtual void AppendToSequence(void *pSequence, void *pNode) {
m_impl.AppendToSequence(AsSequence(pSequence), AsNode(pNode));
}
virtual void SequenceComplete(void *pSequence) {
m_impl.SequenceComplete(AsSequence(pSequence));
}
virtual void *NewMap(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Map>(m_impl.NewMap(mark, tag, AsNode(pParentNode)));
}
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) {
m_impl.AssignInMap(AsMap(pMap), AsNode(pKeyNode), AsNode(pValueNode));
}
virtual void MapComplete(void *pMap) { m_impl.MapComplete(AsMap(pMap)); }
virtual void *AnchorReference(const Mark &mark, void *pNode) {
return CheckType<Node>(m_impl.AnchorReference(mark, AsNode(pNode)));
}
private:
Impl &m_impl;
// Static check for pointer to T
template <class T, class U>
static T *CheckType(U *p) {
return p;
}
static Node *AsNode(void *pNode) { return static_cast<Node *>(pNode); }
static Sequence *AsSequence(void *pSeq) {
return static_cast<Sequence *>(pSeq);
}
static Map *AsMap(void *pMap) { return static_cast<Map *>(pMap); }
};
void *BuildGraphOfNextDocument(Parser &parser,
GraphBuilderInterface &graphBuilder);
template <class Impl>
typename Impl::Node *BuildGraphOfNextDocument(Parser &parser, Impl &impl) {
GraphBuilder<Impl> graphBuilder(impl);
return static_cast<typename Impl::Node *>(
BuildGraphOfNextDocument(parser, graphBuilder));
}
}
#endif // GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,77 +0,0 @@
#ifndef DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000
#define DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "exceptions.h"
namespace YAML {
/**
* @brief The DeepRecursion class
* An exception class which is thrown by DepthGuard. Ideally it should be
* a member of DepthGuard. However, DepthGuard is a templated class which means
* that any catch points would then need to know the template parameters. It is
* simpler for clients to not have to know at the catch point what was the
* maximum depth.
*/
class DeepRecursion : public ParserException {
public:
virtual ~DeepRecursion() = default;
DeepRecursion(int depth, const Mark& mark_, const std::string& msg_);
// Returns the recursion depth when the exception was thrown
int depth() const {
return m_depth;
}
private:
int m_depth = 0;
};
/**
* @brief The DepthGuard class
* DepthGuard takes a reference to an integer. It increments the integer upon
* construction of DepthGuard and decrements the integer upon destruction.
*
* If the integer would be incremented past max_depth, then an exception is
* thrown. This is ideally geared toward guarding against deep recursion.
*
* @param max_depth
* compile-time configurable maximum depth.
*/
template <int max_depth = 2000>
class DepthGuard final {
public:
DepthGuard(int & depth_, const Mark& mark_, const std::string& msg_) : m_depth(depth_) {
++m_depth;
if ( max_depth <= m_depth ) {
throw DeepRecursion{m_depth, mark_, msg_};
}
}
DepthGuard(const DepthGuard & copy_ctor) = delete;
DepthGuard(DepthGuard && move_ctor) = delete;
DepthGuard & operator=(const DepthGuard & copy_assign) = delete;
DepthGuard & operator=(DepthGuard && move_assign) = delete;
~DepthGuard() {
--m_depth;
}
int current_depth() const {
return m_depth;
}
private:
int & m_depth;
};
} // namespace YAML
#endif // DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000

View File

@ -1,59 +1,28 @@
#ifndef DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
// Definition YAML_CPP_STATIC_DEFINE using to building YAML-CPP as static
// library (definition created by CMake or defined manually)
// Definition yaml_cpp_EXPORTS using to building YAML-CPP as dll/so library
// (definition created by CMake or defined manually)
#ifdef YAML_CPP_STATIC_DEFINE
# define YAML_CPP_API
# define YAML_CPP_NO_EXPORT
#else
# if defined(_MSC_VER) || defined(__MINGW32__) || defined(__MINGW64__)
# ifndef YAML_CPP_API
# ifdef yaml_cpp_EXPORTS
/* We are building this library */
# define YAML_CPP_API __declspec(dllexport)
# else
/* We are using this library */
# define YAML_CPP_API __declspec(dllimport)
# endif
# endif
# ifndef YAML_CPP_NO_EXPORT
# define YAML_CPP_NO_EXPORT
# endif
# else /* No _MSC_VER */
# ifndef YAML_CPP_API
# ifdef yaml_cpp_EXPORTS
/* We are building this library */
# define YAML_CPP_API __attribute__((visibility("default")))
# else
/* We are using this library */
# define YAML_CPP_API __attribute__((visibility("default")))
# endif
# endif
# ifndef YAML_CPP_NO_EXPORT
# define YAML_CPP_NO_EXPORT __attribute__((visibility("hidden")))
# endif
# endif /* _MSC_VER */
#endif /* YAML_CPP_STATIC_DEFINE */
#ifndef YAML_CPP_DEPRECATED
# ifdef _MSC_VER
# define YAML_CPP_DEPRECATED __declspec(deprecated)
# else
# define YAML_CPP_DEPRECATED __attribute__ ((__deprecated__))
# endif
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#ifndef YAML_CPP_DEPRECATED_EXPORT
# define YAML_CPP_DEPRECATED_EXPORT YAML_CPP_API YAML_CPP_DEPRECATED
#endif
// The following ifdef block is the standard way of creating macros which make exporting
// from a DLL simpler. All files within this DLL are compiled with the yaml_cpp_EXPORTS
// symbol defined on the command line. this symbol should not be defined on any project
// that uses this DLL. This way any other project whose source files include this file see
// YAML_CPP_API functions as being imported from a DLL, whereas this DLL sees symbols
// defined with this macro as being exported.
#undef YAML_CPP_API
#ifndef YAML_CPP_DEPRECATED_NO_EXPORT
# define YAML_CPP_DEPRECATED_NO_EXPORT YAML_CPP_NO_EXPORT YAML_CPP_DEPRECATED
#endif
#ifdef YAML_CPP_DLL // Using or Building YAML-CPP DLL (definition defined manually)
#ifdef yaml_cpp_EXPORTS // Building YAML-CPP DLL (definition created by CMake or defined manually)
// #pragma message( "Defining YAML_CPP_API for DLL export" )
#define YAML_CPP_API __declspec(dllexport)
#else // yaml_cpp_EXPORTS
// #pragma message( "Defining YAML_CPP_API for DLL import" )
#define YAML_CPP_API __declspec(dllimport)
#endif // yaml_cpp_EXPORTS
#else //YAML_CPP_DLL
#define YAML_CPP_API
#endif // YAML_CPP_DLL
#endif /* DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 */
#endif // DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,58 +1,45 @@
#ifndef EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/eventhandler.h"
#include <stack>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
namespace YAML {
struct Mark;
} // namespace YAML
namespace YAML {
class Emitter;
class EmitFromEvents : public EventHandler {
public:
EmitFromEvents(Emitter& emitter);
~EmitFromEvents() override = default;
void OnDocumentStart(const Mark& mark) override;
void OnDocumentEnd() override;
void OnNull(const Mark& mark, anchor_t anchor) override;
void OnAlias(const Mark& mark, anchor_t anchor) override;
void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) override;
void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnSequenceEnd() override;
void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnMapEnd() override;
private:
void BeginNode();
void EmitProps(const std::string& tag, anchor_t anchor);
private:
Emitter& m_emitter;
struct State {
enum value { WaitingForSequenceEntry, WaitingForKey, WaitingForValue };
};
std::stack<State::value> m_stateStack;
};
namespace YAML
{
class Emitter;
class EmitFromEvents: public EventHandler
{
public:
EmitFromEvents(Emitter& emitter);
virtual void OnDocumentStart(const Mark& mark);
virtual void OnDocumentEnd();
virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnSequenceEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnMapEnd();
private:
void BeginNode();
void EmitProps(const std::string& tag, anchor_t anchor);
private:
Emitter& m_emitter;
struct State { enum value { WaitingForSequenceEntry, WaitingForKey, WaitingForValue }; };
std::stack<State::value> m_stateStack;
};
}
#endif // EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,295 +1,186 @@
#ifndef EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cmath>
#include <cstddef>
#include <cstring>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
#include <string_view>
#endif
#include "yaml-cpp/binary.h"
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/binary.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/ostream.h"
#include "yaml-cpp/noncopyable.h"
#include "yaml-cpp/null.h"
#include "yaml-cpp/ostream_wrapper.h"
#include "yaml-cpp/fptostring.h"
#include <memory>
#include <string>
#include <sstream>
namespace YAML {
class Binary;
struct _Null;
} // namespace YAML
namespace YAML
{
class EmitterState;
class YAML_CPP_API Emitter: private noncopyable
{
public:
Emitter();
~Emitter();
// output
const char *c_str() const;
unsigned size() const;
// state checking
bool good() const;
const std::string GetLastError() const;
// global setters
bool SetOutputCharset(EMITTER_MANIP value);
bool SetStringFormat(EMITTER_MANIP value);
bool SetBoolFormat(EMITTER_MANIP value);
bool SetIntBase(EMITTER_MANIP value);
bool SetSeqFormat(EMITTER_MANIP value);
bool SetMapFormat(EMITTER_MANIP value);
bool SetIndent(unsigned n);
bool SetPreCommentIndent(unsigned n);
bool SetPostCommentIndent(unsigned n);
bool SetFloatPrecision(unsigned n);
bool SetDoublePrecision(unsigned n);
// local setters
Emitter& SetLocalValue(EMITTER_MANIP value);
Emitter& SetLocalIndent(const _Indent& indent);
Emitter& SetLocalPrecision(const _Precision& precision);
// overloads of write
Emitter& Write(const std::string& str);
Emitter& Write(bool b);
Emitter& Write(char ch);
Emitter& Write(const _Alias& alias);
Emitter& Write(const _Anchor& anchor);
Emitter& Write(const _Tag& tag);
Emitter& Write(const _Comment& comment);
Emitter& Write(const _Null& null);
Emitter& Write(const Binary& binary);
template <typename T>
Emitter& WriteIntegralType(T value);
template <typename T>
Emitter& WriteStreamable(T value);
namespace YAML {
class EmitterState;
private:
void PreWriteIntegralType(std::stringstream& str);
void PreWriteStreamable(std::stringstream& str);
void PostWriteIntegralType(const std::stringstream& str);
void PostWriteStreamable(const std::stringstream& str);
template<typename T> void SetStreamablePrecision(std::stringstream&) {}
unsigned GetFloatPrecision() const;
unsigned GetDoublePrecision() const;
private:
void PreAtomicWrite();
bool GotoNextPreAtomicState();
void PostAtomicWrite();
void EmitSeparationIfNecessary();
void EmitBeginDoc();
void EmitEndDoc();
void EmitBeginSeq();
void EmitEndSeq();
void EmitBeginMap();
void EmitEndMap();
void EmitKey();
void EmitValue();
void EmitNewline();
void EmitKindTag();
void EmitTag(bool verbatim, const _Tag& tag);
const char *ComputeFullBoolName(bool b) const;
bool CanEmitNewline() const;
private:
ostream m_stream;
std::auto_ptr <EmitterState> m_pState;
};
template <typename T>
inline Emitter& Emitter::WriteIntegralType(T value)
{
if(!good())
return *this;
std::stringstream str;
PreWriteIntegralType(str);
str << value;
PostWriteIntegralType(str);
return *this;
}
class YAML_CPP_API Emitter {
public:
Emitter();
explicit Emitter(std::ostream& stream);
Emitter(const Emitter&) = delete;
Emitter& operator=(const Emitter&) = delete;
~Emitter();
// output
const char* c_str() const;
std::size_t size() const;
// state checking
bool good() const;
const std::string GetLastError() const;
// global setters
bool SetOutputCharset(EMITTER_MANIP value);
bool SetStringFormat(EMITTER_MANIP value);
bool SetBoolFormat(EMITTER_MANIP value);
bool SetNullFormat(EMITTER_MANIP value);
bool SetIntBase(EMITTER_MANIP value);
bool SetSeqFormat(EMITTER_MANIP value);
bool SetMapFormat(EMITTER_MANIP value);
bool SetIndent(std::size_t n);
bool SetPreCommentIndent(std::size_t n);
bool SetPostCommentIndent(std::size_t n);
bool SetFloatPrecision(std::size_t n);
bool SetDoublePrecision(std::size_t n);
void RestoreGlobalModifiedSettings();
// local setters
Emitter& SetLocalValue(EMITTER_MANIP value);
Emitter& SetLocalIndent(const _Indent& indent);
Emitter& SetLocalPrecision(const _Precision& precision);
// overloads of write
Emitter& Write(const char* str, std::size_t size);
Emitter& Write(const std::string& str);
Emitter& Write(bool b);
Emitter& Write(char ch);
Emitter& Write(const _Alias& alias);
Emitter& Write(const _Anchor& anchor);
Emitter& Write(const _Tag& tag);
Emitter& Write(const _Comment& comment);
Emitter& Write(const _Null& n);
Emitter& Write(const Binary& binary);
template <typename T>
Emitter& WriteIntegralType(T value);
template <typename T>
Emitter& WriteStreamable(T value);
private:
template <typename T>
void SetStreamablePrecision(std::stringstream&) {}
std::size_t GetFloatPrecision() const;
std::size_t GetDoublePrecision() const;
void PrepareIntegralStream(std::stringstream& stream) const;
void StartedScalar();
private:
void EmitBeginDoc();
void EmitEndDoc();
void EmitBeginSeq();
void EmitEndSeq();
void EmitBeginMap();
void EmitEndMap();
void EmitNewline();
void EmitKindTag();
void EmitTag(bool verbatim, const _Tag& tag);
void PrepareNode(EmitterNodeType::value child);
void PrepareTopNode(EmitterNodeType::value child);
void FlowSeqPrepareNode(EmitterNodeType::value child);
void BlockSeqPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareLongKey(EmitterNodeType::value child);
void FlowMapPrepareLongKeyValue(EmitterNodeType::value child);
void FlowMapPrepareSimpleKey(EmitterNodeType::value child);
void FlowMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void BlockMapPrepareNode(EmitterNodeType::value child);
void BlockMapPrepareLongKey(EmitterNodeType::value child);
void BlockMapPrepareLongKeyValue(EmitterNodeType::value child);
void BlockMapPrepareSimpleKey(EmitterNodeType::value child);
void BlockMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void SpaceOrIndentTo(bool requireSpace, std::size_t indent);
const char* ComputeFullBoolName(bool b) const;
const char* ComputeNullName() const;
bool CanEmitNewline() const;
private:
std::unique_ptr<EmitterState> m_pState;
ostream_wrapper m_stream;
};
template <typename T>
inline Emitter& Emitter::WriteIntegralType(T value) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
stream.imbue(std::locale("C"));
PrepareIntegralStream(stream);
stream << value;
m_stream << stream.str();
StartedScalar();
return *this;
}
template <typename T>
inline Emitter& Emitter::WriteStreamable(T value) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
stream.imbue(std::locale("C"));
SetStreamablePrecision<T>(stream);
bool special = false;
if (std::is_floating_point<T>::value) {
if ((std::numeric_limits<T>::has_quiet_NaN ||
std::numeric_limits<T>::has_signaling_NaN) &&
std::isnan(value)) {
special = true;
stream << ".nan";
} else if (std::numeric_limits<T>::has_infinity && std::isinf(value)) {
special = true;
if (std::signbit(value)) {
stream << "-.inf";
} else {
stream << ".inf";
}
template <typename T>
inline Emitter& Emitter::WriteStreamable(T value)
{
if(!good())
return *this;
std::stringstream str;
PreWriteStreamable(str);
SetStreamablePrecision<T>(str);
str << value;
PostWriteStreamable(str);
return *this;
}
template<>
inline void Emitter::SetStreamablePrecision<float>(std::stringstream& str)
{
str.precision(GetFloatPrecision());
}
}
if (!special) {
stream << FpToString(value, stream.precision());
}
m_stream << stream.str();
template<>
inline void Emitter::SetStreamablePrecision<double>(std::stringstream& str)
{
str.precision(GetDoublePrecision());
}
StartedScalar();
// overloads of insertion
inline Emitter& operator << (Emitter& emitter, const std::string& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, bool v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, char v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, unsigned char v) { return emitter.Write(static_cast<char>(v)); }
inline Emitter& operator << (Emitter& emitter, const _Alias& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Anchor& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Tag& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Comment& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Null& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const Binary& b) { return emitter.Write(b); }
return *this;
inline Emitter& operator << (Emitter& emitter, const char *v) { return emitter.Write(std::string(v)); }
inline Emitter& operator << (Emitter& emitter, int v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned int v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, short v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned short v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, long long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned long long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, float v) { return emitter.WriteStreamable(v); }
inline Emitter& operator << (Emitter& emitter, double v) { return emitter.WriteStreamable(v); }
inline Emitter& operator << (Emitter& emitter, EMITTER_MANIP value) {
return emitter.SetLocalValue(value);
}
inline Emitter& operator << (Emitter& emitter, _Indent indent) {
return emitter.SetLocalIndent(indent);
}
inline Emitter& operator << (Emitter& emitter, _Precision precision) {
return emitter.SetLocalPrecision(precision);
}
}
template <>
inline void Emitter::SetStreamablePrecision<float>(std::stringstream& stream) {
stream.precision(static_cast<std::streamsize>(GetFloatPrecision()));
}
template <>
inline void Emitter::SetStreamablePrecision<double>(std::stringstream& stream) {
stream.precision(static_cast<std::streamsize>(GetDoublePrecision()));
}
// overloads of insertion
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
inline Emitter& operator<<(Emitter& emitter, const std::string_view& v) {
return emitter.Write(v.data(), v.size());
}
#endif
inline Emitter& operator<<(Emitter& emitter, const std::string& v) {
return emitter.Write(v.data(), v.size());
}
inline Emitter& operator<<(Emitter& emitter, bool v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, char v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned char v) {
return emitter.Write(static_cast<char>(v));
}
inline Emitter& operator<<(Emitter& emitter, const _Alias& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Anchor& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Tag& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Comment& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Null& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const Binary& b) {
return emitter.Write(b);
}
inline Emitter& operator<<(Emitter& emitter, const char* v) {
return emitter.Write(v, std::strlen(v));
}
inline Emitter& operator<<(Emitter& emitter, int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, float v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, double v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, EMITTER_MANIP value) {
return emitter.SetLocalValue(value);
}
inline Emitter& operator<<(Emitter& emitter, _Indent indent) {
return emitter.SetLocalIndent(indent);
}
inline Emitter& operator<<(Emitter& emitter, _Precision precision) {
return emitter.SetLocalPrecision(precision);
}
} // namespace YAML
#endif // EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,16 +0,0 @@
#ifndef EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
struct EmitterNodeType {
enum value { NoType, Property, Scalar, FlowSeq, BlockSeq, FlowMap, BlockMap };
};
}
#endif // EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,144 +1,149 @@
#ifndef EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
namespace YAML {
enum EMITTER_MANIP {
// general manipulators
Auto,
TagByKind,
Newline,
namespace YAML
{
enum EMITTER_MANIP {
// general manipulators
Auto,
TagByKind,
Newline,
// output character set
EmitNonAscii,
EscapeNonAscii,
EscapeAsJson,
// output character set
EmitNonAscii,
EscapeNonAscii,
// string manipulators
// Auto, // duplicate
SingleQuoted,
DoubleQuoted,
Literal,
// bool manipulators
YesNoBool, // yes, no
TrueFalseBool, // true, false
OnOffBool, // on, off
UpperCase, // TRUE, N
LowerCase, // f, yes
CamelCase, // No, Off
LongBool, // yes, On
ShortBool, // y, t
// int manipulators
Dec,
Hex,
Oct,
// document manipulators
BeginDoc,
EndDoc,
// sequence manipulators
BeginSeq,
EndSeq,
Flow,
Block,
// map manipulators
BeginMap,
EndMap,
Key,
Value,
// Flow, // duplicate
// Block, // duplicate
// Auto, // duplicate
LongKey
};
struct _Indent {
_Indent(int value_): value(value_) {}
int value;
};
inline _Indent Indent(int value) {
return _Indent(value);
}
struct _Alias {
_Alias(const std::string& content_): content(content_) {}
std::string content;
};
inline _Alias Alias(const std::string content) {
return _Alias(content);
}
struct _Anchor {
_Anchor(const std::string& content_): content(content_) {}
std::string content;
};
// string manipulators
// Auto, // duplicate
SingleQuoted,
DoubleQuoted,
Literal,
inline _Anchor Anchor(const std::string content) {
return _Anchor(content);
}
struct _Tag {
struct Type { enum value { Verbatim, PrimaryHandle, NamedHandle }; };
explicit _Tag(const std::string& prefix_, const std::string& content_, Type::value type_)
: prefix(prefix_), content(content_), type(type_)
{
}
std::string prefix;
std::string content;
Type::value type;
};
inline _Tag VerbatimTag(const std::string content) {
return _Tag("", content, _Tag::Type::Verbatim);
}
// null manipulators
LowerNull,
UpperNull,
CamelNull,
TildeNull,
inline _Tag LocalTag(const std::string content) {
return _Tag("", content, _Tag::Type::PrimaryHandle);
}
// bool manipulators
YesNoBool, // yes, no
TrueFalseBool, // true, false
OnOffBool, // on, off
UpperCase, // TRUE, N
LowerCase, // f, yes
CamelCase, // No, Off
LongBool, // yes, On
ShortBool, // y, t
inline _Tag LocalTag(const std::string& prefix, const std::string content) {
return _Tag(prefix, content, _Tag::Type::NamedHandle);
}
// int manipulators
Dec,
Hex,
Oct,
inline _Tag SecondaryTag(const std::string content) {
return _Tag("", content, _Tag::Type::NamedHandle);
}
// document manipulators
BeginDoc,
EndDoc,
struct _Comment {
_Comment(const std::string& content_): content(content_) {}
std::string content;
};
inline _Comment Comment(const std::string content) {
return _Comment(content);
}
struct _Precision {
_Precision(int floatPrecision_, int doublePrecision_): floatPrecision(floatPrecision_), doublePrecision(doublePrecision_) {}
int floatPrecision;
int doublePrecision;
};
inline _Precision FloatPrecision(int n) {
return _Precision(n, -1);
}
// sequence manipulators
BeginSeq,
EndSeq,
Flow,
Block,
inline _Precision DoublePrecision(int n) {
return _Precision(-1, n);
}
// map manipulators
BeginMap,
EndMap,
Key,
Value,
// Flow, // duplicate
// Block, // duplicate
// Auto, // duplicate
LongKey
};
struct _Indent {
_Indent(int value_) : value(value_) {}
int value;
};
inline _Indent Indent(int value) { return _Indent(value); }
struct _Alias {
_Alias(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Alias Alias(const std::string& content) { return _Alias(content); }
struct _Anchor {
_Anchor(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Anchor Anchor(const std::string& content) { return _Anchor(content); }
struct _Tag {
struct Type {
enum value { Verbatim, PrimaryHandle, NamedHandle };
};
explicit _Tag(const std::string& prefix_, const std::string& content_,
Type::value type_)
: prefix(prefix_), content(content_), type(type_) {}
std::string prefix;
std::string content;
Type::value type;
};
inline _Tag VerbatimTag(const std::string& content) {
return _Tag("", content, _Tag::Type::Verbatim);
inline _Precision Precision(int n) {
return _Precision(n, n);
}
}
inline _Tag LocalTag(const std::string& content) {
return _Tag("", content, _Tag::Type::PrimaryHandle);
}
inline _Tag LocalTag(const std::string& prefix, const std::string content) {
return _Tag(prefix, content, _Tag::Type::NamedHandle);
}
inline _Tag SecondaryTag(const std::string& content) {
return _Tag("", content, _Tag::Type::NamedHandle);
}
struct _Comment {
_Comment(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Comment Comment(const std::string& content) { return _Comment(content); }
struct _Precision {
_Precision(int floatPrecision_, int doublePrecision_)
: floatPrecision(floatPrecision_), doublePrecision(doublePrecision_) {}
int floatPrecision;
int doublePrecision;
};
inline _Precision FloatPrecision(int n) { return _Precision(n, -1); }
inline _Precision DoublePrecision(int n) { return _Precision(-1, n); }
inline _Precision Precision(int n) { return _Precision(n, n); }
}
#endif // EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,17 +0,0 @@
#ifndef EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
namespace EmitterStyle {
enum value { Default, Block, Flow };
}
}
#endif // EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,45 +1,36 @@
#ifndef EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/anchor.h"
#include <string>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
namespace YAML
{
struct Mark;
class EventHandler
{
public:
virtual ~EventHandler() {}
namespace YAML {
struct Mark;
virtual void OnDocumentStart(const Mark& mark) = 0;
virtual void OnDocumentEnd() = 0;
virtual void OnNull(const Mark& mark, anchor_t anchor) = 0;
virtual void OnAlias(const Mark& mark, anchor_t anchor) = 0;
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value) = 0;
class EventHandler {
public:
virtual ~EventHandler() = default;
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor) = 0;
virtual void OnSequenceEnd() = 0;
virtual void OnDocumentStart(const Mark& mark) = 0;
virtual void OnDocumentEnd() = 0;
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor) = 0;
virtual void OnMapEnd() = 0;
};
}
virtual void OnNull(const Mark& mark, anchor_t anchor) = 0;
virtual void OnAlias(const Mark& mark, anchor_t anchor) = 0;
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) = 0;
#endif // EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) = 0;
virtual void OnSequenceEnd() = 0;
virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) = 0;
virtual void OnMapEnd() = 0;
virtual void OnAnchor(const Mark& /*mark*/,
const std::string& /*anchor_name*/) {
// empty default implementation for compatibility
}
};
} // namespace YAML
#endif // EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,305 +1,192 @@
#ifndef EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/mark.h"
#include "yaml-cpp/noexcept.h"
#include "yaml-cpp/traits.h"
#include <sstream>
#include <stdexcept>
#include <string>
#include <sstream>
namespace YAML {
// error messages
namespace ErrorMsg {
const char* const YAML_DIRECTIVE_ARGS =
"YAML directives must have exactly one argument";
const char* const YAML_VERSION = "bad YAML version: ";
const char* const YAML_MAJOR_VERSION = "YAML major version too large";
const char* const REPEATED_YAML_DIRECTIVE = "repeated YAML directive";
const char* const TAG_DIRECTIVE_ARGS =
"TAG directives must have exactly two arguments";
const char* const REPEATED_TAG_DIRECTIVE = "repeated TAG directive";
const char* const CHAR_IN_TAG_HANDLE =
"illegal character found while scanning tag handle";
const char* const TAG_WITH_NO_SUFFIX = "tag handle with no suffix";
const char* const END_OF_VERBATIM_TAG = "end of verbatim tag not found";
const char* const END_OF_MAP = "end of map not found";
const char* const END_OF_MAP_FLOW = "end of map flow not found";
const char* const END_OF_SEQ = "end of sequence not found";
const char* const END_OF_SEQ_FLOW = "end of sequence flow not found";
const char* const MULTIPLE_TAGS =
"cannot assign multiple tags to the same node";
const char* const MULTIPLE_ANCHORS =
"cannot assign multiple anchors to the same node";
const char* const MULTIPLE_ALIASES =
"cannot assign multiple aliases to the same node";
const char* const ALIAS_CONTENT =
"aliases can't have any content, *including* tags";
const char* const INVALID_HEX = "bad character found while scanning hex number";
const char* const INVALID_UNICODE = "invalid unicode: ";
const char* const INVALID_ESCAPE = "unknown escape character: ";
const char* const UNKNOWN_TOKEN = "unknown token";
const char* const DOC_IN_SCALAR = "illegal document indicator in scalar";
const char* const EOF_IN_SCALAR = "illegal EOF in scalar";
const char* const CHAR_IN_SCALAR = "illegal character in scalar";
const char* const UNEXPECTED_SCALAR = "unexpected scalar";
const char* const UNEXPECTED_FLOW = "plain value cannot start with flow indicator character";
const char* const TAB_IN_INDENTATION =
"illegal tab when looking for indentation";
const char* const FLOW_END = "illegal flow end";
const char* const BLOCK_ENTRY = "illegal block entry";
const char* const MAP_KEY = "illegal map key";
const char* const MAP_VALUE = "illegal map value";
const char* const ALIAS_NOT_FOUND = "alias not found after *";
const char* const ANCHOR_NOT_FOUND = "anchor not found after &";
const char* const CHAR_IN_ALIAS =
"illegal character found while scanning alias";
const char* const CHAR_IN_ANCHOR =
"illegal character found while scanning anchor";
const char* const ZERO_INDENT_IN_BLOCK =
"cannot set zero indentation for a block scalar";
const char* const CHAR_IN_BLOCK = "unexpected character in block scalar";
const char* const AMBIGUOUS_ANCHOR =
"cannot assign the same alias to multiple nodes";
const char* const UNKNOWN_ANCHOR = "the referenced anchor is not defined: ";
namespace YAML
{
// error messages
namespace ErrorMsg
{
const char * const YAML_DIRECTIVE_ARGS = "YAML directives must have exactly one argument";
const char * const YAML_VERSION = "bad YAML version: ";
const char * const YAML_MAJOR_VERSION = "YAML major version too large";
const char * const REPEATED_YAML_DIRECTIVE= "repeated YAML directive";
const char * const TAG_DIRECTIVE_ARGS = "TAG directives must have exactly two arguments";
const char * const REPEATED_TAG_DIRECTIVE = "repeated TAG directive";
const char * const CHAR_IN_TAG_HANDLE = "illegal character found while scanning tag handle";
const char * const TAG_WITH_NO_SUFFIX = "tag handle with no suffix";
const char * const END_OF_VERBATIM_TAG = "end of verbatim tag not found";
const char * const END_OF_MAP = "end of map not found";
const char * const END_OF_MAP_FLOW = "end of map flow not found";
const char * const END_OF_SEQ = "end of sequence not found";
const char * const END_OF_SEQ_FLOW = "end of sequence flow not found";
const char * const MULTIPLE_TAGS = "cannot assign multiple tags to the same node";
const char * const MULTIPLE_ANCHORS = "cannot assign multiple anchors to the same node";
const char * const MULTIPLE_ALIASES = "cannot assign multiple aliases to the same node";
const char * const ALIAS_CONTENT = "aliases can't have any content, *including* tags";
const char * const INVALID_HEX = "bad character found while scanning hex number";
const char * const INVALID_UNICODE = "invalid unicode: ";
const char * const INVALID_ESCAPE = "unknown escape character: ";
const char * const UNKNOWN_TOKEN = "unknown token";
const char * const DOC_IN_SCALAR = "illegal document indicator in scalar";
const char * const EOF_IN_SCALAR = "illegal EOF in scalar";
const char * const CHAR_IN_SCALAR = "illegal character in scalar";
const char * const TAB_IN_INDENTATION = "illegal tab when looking for indentation";
const char * const FLOW_END = "illegal flow end";
const char * const BLOCK_ENTRY = "illegal block entry";
const char * const MAP_KEY = "illegal map key";
const char * const MAP_VALUE = "illegal map value";
const char * const ALIAS_NOT_FOUND = "alias not found after *";
const char * const ANCHOR_NOT_FOUND = "anchor not found after &";
const char * const CHAR_IN_ALIAS = "illegal character found while scanning alias";
const char * const CHAR_IN_ANCHOR = "illegal character found while scanning anchor";
const char * const ZERO_INDENT_IN_BLOCK = "cannot set zero indentation for a block scalar";
const char * const CHAR_IN_BLOCK = "unexpected character in block scalar";
const char * const AMBIGUOUS_ANCHOR = "cannot assign the same alias to multiple nodes";
const char * const UNKNOWN_ANCHOR = "the referenced anchor is not defined";
const char* const INVALID_NODE =
"invalid node; this may result from using a map iterator as a sequence "
"iterator, or vice-versa";
const char* const INVALID_SCALAR = "invalid scalar";
const char* const KEY_NOT_FOUND = "key not found";
const char* const BAD_CONVERSION = "bad conversion";
const char* const BAD_DEREFERENCE = "bad dereference";
const char* const BAD_SUBSCRIPT = "operator[] call on a scalar";
const char* const BAD_PUSHBACK = "appending to a non-sequence";
const char* const BAD_INSERT = "inserting in a non-convertible-to-map";
const char * const INVALID_SCALAR = "invalid scalar";
const char * const KEY_NOT_FOUND = "key not found";
const char * const BAD_CONVERSION = "bad conversion";
const char * const BAD_DEREFERENCE = "bad dereference";
const char * const BAD_SUBSCRIPT = "operator[] call on a scalar";
const char * const BAD_PUSHBACK = "appending to a non-sequence";
const char * const UNMATCHED_GROUP_TAG = "unmatched group tag";
const char * const UNEXPECTED_END_SEQ = "unexpected end sequence token";
const char * const UNEXPECTED_END_MAP = "unexpected end map token";
const char * const SINGLE_QUOTED_CHAR = "invalid character in single-quoted string";
const char * const INVALID_ANCHOR = "invalid anchor";
const char * const INVALID_ALIAS = "invalid alias";
const char * const INVALID_TAG = "invalid tag";
const char * const EXPECTED_KEY_TOKEN = "expected key token";
const char * const EXPECTED_VALUE_TOKEN = "expected value token";
const char * const UNEXPECTED_KEY_TOKEN = "unexpected key token";
const char * const UNEXPECTED_VALUE_TOKEN = "unexpected value token";
const char* const UNMATCHED_GROUP_TAG = "unmatched group tag";
const char* const UNEXPECTED_END_SEQ = "unexpected end sequence token";
const char* const UNEXPECTED_END_MAP = "unexpected end map token";
const char* const SINGLE_QUOTED_CHAR =
"invalid character in single-quoted string";
const char* const INVALID_ANCHOR = "invalid anchor";
const char* const INVALID_ALIAS = "invalid alias";
const char* const INVALID_TAG = "invalid tag";
const char* const BAD_FILE = "bad file";
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(const T&, typename disable_if<is_numeric<T> >::type * = 0) {
return KEY_NOT_FOUND;
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(
const T&, typename disable_if<is_numeric<T>>::type* = 0) {
return KEY_NOT_FOUND;
inline const std::string KEY_NOT_FOUND_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(const T& key, typename enable_if<is_numeric<T> >::type * = 0) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
}
class Exception: public std::runtime_error {
public:
Exception(const Mark& mark_, const std::string& msg_)
: std::runtime_error(build_what(mark_, msg_)), mark(mark_), msg(msg_) {}
virtual ~Exception() throw() {}
Mark mark;
std::string msg;
private:
static const std::string build_what(const Mark& mark, const std::string& msg) {
std::stringstream output;
output << "yaml-cpp: error at line " << mark.line+1 << ", column " << mark.column+1 << ": " << msg;
return output.str();
}
};
class ParserException: public Exception {
public:
ParserException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
class RepresentationException: public Exception {
public:
RepresentationException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
// representation exceptions
class InvalidScalar: public RepresentationException {
public:
InvalidScalar(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::INVALID_SCALAR) {}
};
class KeyNotFound: public RepresentationException {
public:
template <typename T>
KeyNotFound(const Mark& mark_, const T& key_)
: RepresentationException(mark_, ErrorMsg::KEY_NOT_FOUND_WITH_KEY(key_)) {}
};
template <typename T>
class TypedKeyNotFound: public KeyNotFound {
public:
TypedKeyNotFound(const Mark& mark_, const T& key_)
: KeyNotFound(mark_, key_), key(key_) {}
virtual ~TypedKeyNotFound() throw() {}
T key;
};
template <typename T>
inline TypedKeyNotFound <T> MakeTypedKeyNotFound(const Mark& mark, const T& key) {
return TypedKeyNotFound <T> (mark, key);
}
class BadConversion: public RepresentationException {
public:
BadConversion()
: RepresentationException(Mark::null(), ErrorMsg::BAD_CONVERSION) {}
};
template<typename T>
class TypedBadConversion: public BadConversion {
public:
TypedBadConversion()
: BadConversion() {}
};
class BadDereference: public RepresentationException {
public:
BadDereference()
: RepresentationException(Mark::null(), ErrorMsg::BAD_DEREFERENCE) {}
};
class BadSubscript: public RepresentationException {
public:
BadSubscript()
: RepresentationException(Mark::null(), ErrorMsg::BAD_SUBSCRIPT) {}
};
class BadPushback: public RepresentationException {
public:
BadPushback()
: RepresentationException(Mark::null(), ErrorMsg::BAD_PUSHBACK) {}
};
class EmitterException: public Exception {
public:
EmitterException(const std::string& msg_)
: Exception(Mark::null(), msg_) {}
};
}
inline const std::string KEY_NOT_FOUND_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
inline const std::string KEY_NOT_FOUND_WITH_KEY(const char* key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(
const T& key, typename enable_if<is_numeric<T>>::type* = 0) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string BAD_SUBSCRIPT_WITH_KEY(
const T&, typename disable_if<is_numeric<T>>::type* = nullptr) {
return BAD_SUBSCRIPT;
}
inline const std::string BAD_SUBSCRIPT_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
inline const std::string BAD_SUBSCRIPT_WITH_KEY(const char* key) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
template <typename T>
inline const std::string BAD_SUBSCRIPT_WITH_KEY(
const T& key, typename enable_if<is_numeric<T>>::type* = nullptr) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
inline const std::string INVALID_NODE_WITH_KEY(const std::string& key) {
std::stringstream stream;
if (key.empty()) {
return INVALID_NODE;
}
stream << "invalid node; first invalid key: \"" << key << "\"";
return stream.str();
}
} // namespace ErrorMsg
class YAML_CPP_API Exception : public std::runtime_error {
public:
Exception(const Mark& mark_, const std::string& msg_)
: std::runtime_error(build_what(mark_, msg_)), mark(mark_), msg(msg_) {}
~Exception() YAML_CPP_NOEXCEPT override;
Exception(const Exception&) = default;
Mark mark;
std::string msg;
private:
static const std::string build_what(const Mark& mark,
const std::string& msg) {
if (mark.is_null()) {
return msg;
}
std::stringstream output;
output << "yaml-cpp: error at line " << mark.line + 1 << ", column "
<< mark.column + 1 << ": " << msg;
return output.str();
}
};
class YAML_CPP_API ParserException : public Exception {
public:
ParserException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
ParserException(const ParserException&) = default;
~ParserException() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API RepresentationException : public Exception {
public:
RepresentationException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
RepresentationException(const RepresentationException&) = default;
~RepresentationException() YAML_CPP_NOEXCEPT override;
};
// representation exceptions
class YAML_CPP_API InvalidScalar : public RepresentationException {
public:
InvalidScalar(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::INVALID_SCALAR) {}
InvalidScalar(const InvalidScalar&) = default;
~InvalidScalar() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API KeyNotFound : public RepresentationException {
public:
template <typename T>
KeyNotFound(const Mark& mark_, const T& key_)
: RepresentationException(mark_, ErrorMsg::KEY_NOT_FOUND_WITH_KEY(key_)) {
}
KeyNotFound(const KeyNotFound&) = default;
~KeyNotFound() YAML_CPP_NOEXCEPT override;
};
template <typename T>
class YAML_CPP_API TypedKeyNotFound : public KeyNotFound {
public:
TypedKeyNotFound(const Mark& mark_, const T& key_)
: KeyNotFound(mark_, key_), key(key_) {}
~TypedKeyNotFound() YAML_CPP_NOEXCEPT override = default;
T key;
};
template <typename T>
inline TypedKeyNotFound<T> MakeTypedKeyNotFound(const Mark& mark,
const T& key) {
return TypedKeyNotFound<T>(mark, key);
}
class YAML_CPP_API InvalidNode : public RepresentationException {
public:
InvalidNode(const std::string& key)
: RepresentationException(Mark::null_mark(),
ErrorMsg::INVALID_NODE_WITH_KEY(key)) {}
InvalidNode(const InvalidNode&) = default;
~InvalidNode() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadConversion : public RepresentationException {
public:
explicit BadConversion(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::BAD_CONVERSION) {}
BadConversion(const BadConversion&) = default;
~BadConversion() YAML_CPP_NOEXCEPT override;
};
template <typename T>
class TypedBadConversion : public BadConversion {
public:
explicit TypedBadConversion(const Mark& mark_) : BadConversion(mark_) {}
};
class YAML_CPP_API BadDereference : public RepresentationException {
public:
BadDereference()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_DEREFERENCE) {}
BadDereference(const BadDereference&) = default;
~BadDereference() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadSubscript : public RepresentationException {
public:
template <typename Key>
BadSubscript(const Mark& mark_, const Key& key)
: RepresentationException(mark_, ErrorMsg::BAD_SUBSCRIPT_WITH_KEY(key)) {}
BadSubscript(const BadSubscript&) = default;
~BadSubscript() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadPushback : public RepresentationException {
public:
BadPushback()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_PUSHBACK) {}
BadPushback(const BadPushback&) = default;
~BadPushback() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadInsert : public RepresentationException {
public:
BadInsert()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_INSERT) {}
BadInsert(const BadInsert&) = default;
~BadInsert() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API EmitterException : public Exception {
public:
EmitterException(const std::string& msg_)
: Exception(Mark::null_mark(), msg_) {}
EmitterException(const EmitterException&) = default;
~EmitterException() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadFile : public Exception {
public:
explicit BadFile(const std::string& filename)
: Exception(Mark::null_mark(),
std::string(ErrorMsg::BAD_FILE) + ": " + filename) {}
BadFile(const BadFile&) = default;
~BadFile() YAML_CPP_NOEXCEPT override;
};
} // namespace YAML
#endif // EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,15 +0,0 @@
#ifndef YAML_H_FPTOSTRING
#define YAML_H_FPTOSTRING
#include "yaml-cpp/dll.h"
#include <string>
namespace YAML {
// "precision = 0" refers to shortest known unique representation of the value
YAML_CPP_API std::string FpToString(float v, size_t precision = 0);
YAML_CPP_API std::string FpToString(double v, size_t precision = 0);
YAML_CPP_API std::string FpToString(long double v, size_t precision = 0);
}
#endif

View File

@ -1,29 +1,26 @@
#ifndef MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
namespace YAML {
struct YAML_CPP_API Mark {
Mark() : pos(0), line(0), column(0) {}
static const Mark null_mark() { return Mark(-1, -1, -1); }
bool is_null() const { return pos == -1 && line == -1 && column == -1; }
int pos;
int line, column;
private:
Mark(int pos_, int line_, int column_)
: pos(pos_), line(line_), column(column_) {}
};
namespace YAML
{
struct YAML_CPP_API Mark {
Mark(): pos(0), line(0), column(0) {}
static const Mark null() { return Mark(-1, -1, -1); }
int pos;
int line, column;
private:
Mark(int pos_, int line_, int column_): pos(pos_), line(line_), column(column_) {}
};
}
#endif // MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,472 +1,209 @@
#ifndef NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <array>
#include <cmath>
#include "yaml-cpp/binary.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/null.h"
#include <limits>
#include <list>
#include <map>
#include <unordered_map>
#include <sstream>
#include <type_traits>
#include <valarray>
#include <vector>
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
#include <string_view>
#endif
#include "yaml-cpp/binary.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/null.h"
#include "yaml-cpp/fptostring.h"
namespace YAML {
class Binary;
struct _Null;
template <typename T>
struct convert;
} // namespace YAML
namespace YAML {
namespace conversion {
inline bool IsInfinity(const std::string& input) {
return input == ".inf" || input == ".Inf" || input == ".INF" ||
input == "+.inf" || input == "+.Inf" || input == "+.INF";
}
inline bool IsNegativeInfinity(const std::string& input) {
return input == "-.inf" || input == "-.Inf" || input == "-.INF";
}
inline bool IsNaN(const std::string& input) {
return input == ".nan" || input == ".NaN" || input == ".NAN";
}
}
// Node
template <>
struct convert<Node> {
static Node encode(const Node& rhs) { return rhs; }
static bool decode(const Node& node, Node& rhs) {
rhs.reset(node);
return true;
}
};
// std::string
template <>
struct convert<std::string> {
static Node encode(const std::string& rhs) { return Node(rhs); }
static bool decode(const Node& node, std::string& rhs) {
if (!node.IsScalar())
return false;
rhs = node.Scalar();
return true;
}
};
// C-strings can only be encoded
template <>
struct convert<const char*> {
static Node encode(const char* rhs) { return Node(rhs); }
};
template <>
struct convert<char*> {
static Node encode(const char* rhs) { return Node(rhs); }
};
template <std::size_t N>
struct convert<char[N]> {
static Node encode(const char* rhs) { return Node(rhs); }
};
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
template <>
struct convert<std::string_view> {
static Node encode(std::string_view rhs) { return Node(std::string(rhs)); }
static bool decode(const Node& node, std::string_view& rhs) {
if (!node.IsScalar())
return false;
rhs = node.Scalar();
return true;
}
};
#endif
template <>
struct convert<_Null> {
static Node encode(const _Null& /* rhs */) { return Node(); }
static bool decode(const Node& node, _Null& /* rhs */) {
return node.IsNull();
}
};
namespace conversion {
template <typename T>
typename std::enable_if< std::is_floating_point<T>::value, void>::type
inner_encode(const T& rhs, std::stringstream& stream){
if (std::isnan(rhs)) {
stream << ".nan";
} else if (std::isinf(rhs)) {
if (std::signbit(rhs)) {
stream << "-.inf";
} else {
stream << ".inf";
namespace YAML
{
namespace conversion {
inline bool IsInfinity(const std::string& input) {
return input == ".inf" || input == ".Inf" || input == ".INF" || input == "+.inf" || input == "+.Inf" || input == "+.INF";
}
inline bool IsNegativeInfinity(const std::string& input) {
return input == "-.inf" || input == "-.Inf" || input == "-.INF";
}
inline bool IsNaN(const std::string& input) {
return input == ".nan" || input == ".NaN" || input == ".NAN";
}
}
} else {
stream << FpToString(rhs, stream.precision());
}
}
template <typename T>
typename std::enable_if<!std::is_floating_point<T>::value, void>::type
inner_encode(const T& rhs, std::stringstream& stream){
stream << rhs;
}
template <typename T>
typename std::enable_if<(std::is_same<T, unsigned char>::value ||
std::is_same<T, signed char>::value), bool>::type
ConvertStreamTo(std::stringstream& stream, T& rhs) {
int num;
if ((stream >> std::noskipws >> num) && (stream >> std::ws).eof()) {
if (num >= (std::numeric_limits<T>::min)() &&
num <= (std::numeric_limits<T>::max)()) {
rhs = static_cast<T>(num);
return true;
}
}
return false;
}
template <typename T>
typename std::enable_if<!(std::is_same<T, unsigned char>::value ||
std::is_same<T, signed char>::value), bool>::type
ConvertStreamTo(std::stringstream& stream, T& rhs) {
if ((stream >> std::noskipws >> rhs) && (stream >> std::ws).eof()) {
return true;
}
return false;
}
}
#define YAML_DEFINE_CONVERT_STREAMABLE(type, negative_op) \
template <> \
struct convert<type> { \
\
static Node encode(const type& rhs) { \
std::stringstream stream; \
stream.imbue(std::locale("C")); \
stream.precision(std::numeric_limits<type>::max_digits10); \
conversion::inner_encode(rhs, stream); \
return Node(stream.str()); \
} \
\
static bool decode(const Node& node, type& rhs) { \
if (node.Type() != NodeType::Scalar) { \
return false; \
} \
const std::string& input = node.Scalar(); \
std::stringstream stream(input); \
stream.imbue(std::locale("C")); \
stream.unsetf(std::ios::dec); \
if ((stream.peek() == '-') && std::is_unsigned<type>::value) { \
return false; \
} \
if (conversion::ConvertStreamTo(stream, rhs)) { \
return true; \
} \
if (std::numeric_limits<type>::has_infinity) { \
if (conversion::IsInfinity(input)) { \
rhs = std::numeric_limits<type>::infinity(); \
return true; \
} else if (conversion::IsNegativeInfinity(input)) { \
rhs = negative_op std::numeric_limits<type>::infinity(); \
return true; \
} \
} \
\
if (std::numeric_limits<type>::has_quiet_NaN) { \
if (conversion::IsNaN(input)) { \
rhs = std::numeric_limits<type>::quiet_NaN(); \
return true; \
} \
} \
\
return false; \
} \
}
#define YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE(type, -)
#define YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE(type, +)
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(int);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(short);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned short);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(signed char);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(float);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(double);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long double);
#undef YAML_DEFINE_CONVERT_STREAMABLE_SIGNED
#undef YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED
// std::string
template<>
struct convert<std::string> {
static Node encode(const std::string& rhs) {
return Node(rhs);
}
static bool decode(const Node& node, std::string& rhs) {
if(!node.IsScalar())
return false;
rhs = node.Scalar();
return true;
}
};
template<>
struct convert<_Null> {
static Node encode(const _Null& /* rhs */) {
return Node();
}
static bool decode(const Node& node, _Null& /* rhs */) {
return node.IsNull();
}
};
#define YAML_DEFINE_CONVERT_STREAMABLE(type)\
template<>\
struct convert<type> {\
static Node encode(const type& rhs) {\
std::stringstream stream;\
stream << rhs;\
return Node(stream.str());\
}\
\
static bool decode(const Node& node, type& rhs) {\
if(node.Type() != NodeType::Scalar)\
return false;\
const std::string& input = node.Scalar();\
std::stringstream stream(input);\
stream.unsetf(std::ios::dec);\
if((stream >> rhs) && (stream >> std::ws).eof())\
return true;\
if(std::numeric_limits<type>::has_infinity) {\
if(conversion::IsInfinity(input)) {\
rhs = std::numeric_limits<type>::infinity();\
return true;\
} else if(conversion::IsNegativeInfinity(input)) {\
rhs = -std::numeric_limits<type>::infinity();\
return true;\
}\
}\
\
if(std::numeric_limits<type>::has_quiet_NaN && conversion::IsNaN(input)) {\
rhs = std::numeric_limits<type>::quiet_NaN();\
return true;\
}\
\
return false;\
}\
}
YAML_DEFINE_CONVERT_STREAMABLE(int);
YAML_DEFINE_CONVERT_STREAMABLE(unsigned);
YAML_DEFINE_CONVERT_STREAMABLE(short);
YAML_DEFINE_CONVERT_STREAMABLE(unsigned short);
YAML_DEFINE_CONVERT_STREAMABLE(long);
YAML_DEFINE_CONVERT_STREAMABLE(unsigned long);
YAML_DEFINE_CONVERT_STREAMABLE(long long);
YAML_DEFINE_CONVERT_STREAMABLE(unsigned long long);
YAML_DEFINE_CONVERT_STREAMABLE(char);
YAML_DEFINE_CONVERT_STREAMABLE(unsigned char);
YAML_DEFINE_CONVERT_STREAMABLE(float);
YAML_DEFINE_CONVERT_STREAMABLE(double);
YAML_DEFINE_CONVERT_STREAMABLE(long double);
#undef YAML_DEFINE_CONVERT_STREAMABLE
// bool
template<>
struct convert<bool> {
static Node encode(bool rhs) {
return rhs ? Node("true") : Node("false");
}
static bool decode(const Node& node, bool& rhs);
};
// bool
template <>
struct convert<bool> {
static Node encode(bool rhs) { return rhs ? Node("true") : Node("false"); }
// std::map
template<typename K, typename V>
struct convert<std::map<K, V> > {
static Node encode(const std::map<K, V>& rhs) {
Node node(NodeType::Map);
for(typename std::map<K, V>::const_iterator it=rhs.begin();it!=rhs.end();++it)
node[it->first] = it->second;
return node;
}
static bool decode(const Node& node, std::map<K, V>& rhs) {
if(!node.IsMap())
return false;
YAML_CPP_API static bool decode(const Node& node, bool& rhs);
};
// std::map
template <typename K, typename V, typename C, typename A>
struct convert<std::map<K, V, C, A>> {
static Node encode(const std::map<K, V, C, A>& rhs) {
Node node(NodeType::Map);
for (const auto& element : rhs)
node.force_insert(element.first, element.second);
return node;
}
static bool decode(const Node& node, std::map<K, V, C, A>& rhs) {
if (!node.IsMap())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[element.first.template as<K>()] = element.second.template as<V>();
#else
rhs[element.first.as<K>()] = element.second.as<V>();
#endif
return true;
}
};
// std::unordered_map
template <typename K, typename V, typename H, typename P, typename A>
struct convert<std::unordered_map<K, V, H, P, A>> {
static Node encode(const std::unordered_map<K, V, H, P, A>& rhs) {
Node node(NodeType::Map);
for (const auto& element : rhs)
node.force_insert(element.first, element.second);
return node;
}
static bool decode(const Node& node, std::unordered_map<K, V, H, P, A>& rhs) {
if (!node.IsMap())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[element.first.template as<K>()] = element.second.template as<V>();
#else
rhs[element.first.as<K>()] = element.second.as<V>();
#endif
return true;
}
};
// std::vector
template <typename T, typename A>
struct convert<std::vector<T, A>> {
static Node encode(const std::vector<T, A>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs)
node.push_back(element);
return node;
}
static bool decode(const Node& node, std::vector<T, A>& rhs) {
if (!node.IsSequence())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.push_back(element.template as<T>());
#else
rhs.push_back(element.as<T>());
#endif
return true;
}
};
// std::list
template <typename T, typename A>
struct convert<std::list<T,A>> {
static Node encode(const std::list<T,A>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs)
node.push_back(element);
return node;
}
static bool decode(const Node& node, std::list<T,A>& rhs) {
if (!node.IsSequence())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.push_back(element.template as<T>());
#else
rhs.push_back(element.as<T>());
#endif
return true;
}
};
// std::array
template <typename T, std::size_t N>
struct convert<std::array<T, N>> {
static Node encode(const std::array<T, N>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs) {
node.push_back(element);
}
return node;
}
static bool decode(const Node& node, std::array<T, N>& rhs) {
if (!isNodeValid(node)) {
return false;
}
for (auto i = 0u; i < node.size(); ++i) {
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[i] = node[i].template as<T>();
#else
rhs[i] = node[i].as<T>();
#endif
}
return true;
}
private:
static bool isNodeValid(const Node& node) {
return node.IsSequence() && node.size() == N;
}
};
// std::valarray
template <typename T>
struct convert<std::valarray<T>> {
static Node encode(const std::valarray<T>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs) {
node.push_back(element);
}
return node;
}
static bool decode(const Node& node, std::valarray<T>& rhs) {
if (!node.IsSequence()) {
return false;
}
rhs.resize(node.size());
for (auto i = 0u; i < node.size(); ++i) {
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[i] = node[i].template as<T>();
#else
rhs[i] = node[i].as<T>();
#endif
}
return true;
}
};
// std::pair
template <typename T, typename U>
struct convert<std::pair<T, U>> {
static Node encode(const std::pair<T, U>& rhs) {
Node node(NodeType::Sequence);
node.push_back(rhs.first);
node.push_back(rhs.second);
return node;
}
static bool decode(const Node& node, std::pair<T, U>& rhs) {
if (!node.IsSequence())
return false;
if (node.size() != 2)
return false;
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.first = node[0].template as<T>();
#else
rhs.first = node[0].as<T>();
#endif
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.second = node[1].template as<U>();
#else
rhs.second = node[1].as<U>();
#endif
return true;
}
};
// binary
template <>
struct convert<Binary> {
static Node encode(const Binary& rhs) {
return Node(EncodeBase64(rhs.data(), rhs.size()));
}
static bool decode(const Node& node, Binary& rhs) {
if (!node.IsScalar())
return false;
std::vector<unsigned char> data = DecodeBase64(node.Scalar());
if (data.empty() && !node.Scalar().empty())
return false;
rhs.swap(data);
return true;
}
};
rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it)
rhs[it->first.as<K>()] = it->second.as<V>();
return true;
}
};
// std::vector
template<typename T>
struct convert<std::vector<T> > {
static Node encode(const std::vector<T>& rhs) {
Node node(NodeType::Sequence);
for(typename std::vector<T>::const_iterator it=rhs.begin();it!=rhs.end();++it)
node.push_back(*it);
return node;
}
static bool decode(const Node& node, std::vector<T>& rhs) {
if(!node.IsSequence())
return false;
rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it)
rhs.push_back(it->as<T>());
return true;
}
};
// std::list
template<typename T>
struct convert<std::list<T> > {
static Node encode(const std::list<T>& rhs) {
Node node(NodeType::Sequence);
for(typename std::list<T>::const_iterator it=rhs.begin();it!=rhs.end();++it)
node.push_back(*it);
return node;
}
static bool decode(const Node& node, std::list<T>& rhs) {
if(!node.IsSequence())
return false;
rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it)
rhs.push_back(it->as<T>());
return true;
}
};
// binary
template<>
struct convert<Binary> {
static Node encode(const Binary& rhs) {
return Node(EncodeBase64(rhs.data(), rhs.size()));
}
static bool decode(const Node& node, Binary& rhs) {
if(!node.IsScalar())
return false;
std::vector<unsigned char> data = DecodeBase64(node.Scalar());
if(data.empty() && !node.Scalar().empty())
return false;
rhs.swap(data);
return true;
}
};
}
#endif // NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -0,0 +1,26 @@
#ifndef NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML
{
namespace detail
{
struct unspecified_bool {
struct NOT_ALLOWED;
static void true_value(NOT_ALLOWED*) {}
};
typedef void (*unspecified_bool_type)(unspecified_bool::NOT_ALLOWED*);
}
}
#define YAML_CPP_OPERATOR_BOOL()\
operator YAML::detail::unspecified_bool_type() const\
{\
return this->operator!() ? 0 : &YAML::detail::unspecified_bool::true_value;\
}
#endif // NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,235 +1,142 @@
#ifndef NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_data.h"
#include <boost/type_traits.hpp>
#include <algorithm>
#include <type_traits>
namespace YAML
{
namespace detail
{
template<typename Key, typename Enable = void>
struct get_idx {
static node *get(const std::vector<node *>& /* sequence */, const Key& /* key */, shared_memory_holder /* pMemory */) {
return 0;
}
};
namespace YAML {
namespace detail {
template <typename Key, typename Enable = void>
struct get_idx {
static node* get(const std::vector<node*>& /* sequence */,
const Key& /* key */, shared_memory_holder /* pMemory */) {
return nullptr;
}
};
template<typename Key>
struct get_idx<Key, typename boost::enable_if<boost::is_unsigned<Key> >::type> {
static node *get(const std::vector<node *>& sequence, const Key& key, shared_memory_holder /* pMemory */) {
return key < sequence.size() ? sequence[key] : 0;
}
template <typename Key>
struct get_idx<Key,
typename std::enable_if<std::is_unsigned<Key>::value &&
!std::is_same<Key, bool>::value>::type> {
static node* get(const std::vector<node*>& sequence, const Key& key,
shared_memory_holder /* pMemory */) {
return key < sequence.size() ? sequence[key] : nullptr;
}
static node *get(std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) {
if(key > sequence.size())
return 0;
if(key == sequence.size())
sequence.push_back(&pMemory->create_node());
return sequence[key];
}
};
template<typename Key>
struct get_idx<Key, typename boost::enable_if<boost::is_signed<Key> >::type> {
static node *get(const std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(sequence, static_cast<std::size_t>(key), pMemory) : 0;
}
static node *get(std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(sequence, static_cast<std::size_t>(key), pMemory) : 0;
}
};
static node* get(std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
if (key > sequence.size() || (key > 0 && !sequence[key - 1]->is_defined()))
return nullptr;
if (key == sequence.size())
sequence.push_back(&pMemory->create_node());
return sequence[key];
}
};
// indexing
template<typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory) const
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
return pMemory->create_node();
case NodeType::Sequence:
if(node *pNode = get_idx<Key>::get(m_sequence, key, pMemory))
return *pNode;
return pMemory->create_node();
case NodeType::Scalar:
throw BadSubscript();
}
template <typename Key>
struct get_idx<Key, typename std::enable_if<std::is_signed<Key>::value>::type> {
static node* get(const std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(
sequence, static_cast<std::size_t>(key), pMemory)
: nullptr;
}
static node* get(std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(
sequence, static_cast<std::size_t>(key), pMemory)
: nullptr;
}
};
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory))
return *it->second;
}
return pMemory->create_node();
}
template<typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
if(node *pNode = get_idx<Key>::get(m_sequence, key, pMemory)) {
m_type = NodeType::Sequence;
return *pNode;
}
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript();
}
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory))
return *it->second;
}
node& k = convert_to_node(key, pMemory);
node& v = pMemory->create_node();
insert_map_pair(k, v);
return v;
}
template<typename Key>
inline bool node_data::remove(const Key& key, shared_memory_holder pMemory)
{
if(m_type != NodeType::Map)
return false;
for(node_map::iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory)) {
m_map.erase(it);
return true;
}
}
return false;
}
template <typename Key, typename Enable = void>
struct remove_idx {
static bool remove(std::vector<node*>&, const Key&, std::size_t&) {
return false;
}
};
template <typename Key>
struct remove_idx<
Key, typename std::enable_if<std::is_unsigned<Key>::value &&
!std::is_same<Key, bool>::value>::type> {
static bool remove(std::vector<node*>& sequence, const Key& key,
std::size_t& seqSize) {
if (key >= sequence.size()) {
return false;
} else {
sequence.erase(sequence.begin() + key);
if (seqSize > key) {
--seqSize;
}
return true;
}
}
};
template <typename Key>
struct remove_idx<Key,
typename std::enable_if<std::is_signed<Key>::value>::type> {
static bool remove(std::vector<node*>& sequence, const Key& key,
std::size_t& seqSize) {
return key >= 0 ? remove_idx<std::size_t>::remove(
sequence, static_cast<std::size_t>(key), seqSize)
: false;
}
};
template <typename T>
inline bool node::equals(const T& rhs, shared_memory_holder pMemory) {
T lhs;
if (convert<T>::decode(Node(*this, pMemory), lhs)) {
return lhs == rhs;
}
return false;
template<typename T>
inline bool node_data::equals(node& node, const T& rhs, shared_memory_holder pMemory)
{
T lhs;
if(convert<T>::decode(Node(node, pMemory), lhs))
return lhs == rhs;
return false;
}
template<typename T>
inline node& node_data::convert_to_node(const T& rhs, shared_memory_holder pMemory)
{
Node value = convert<T>::encode(rhs);
value.EnsureNodeExists();
pMemory->merge(*value.m_pMemory);
return *value.m_pNode;
}
}
}
inline bool node::equals(const char* rhs, shared_memory_holder pMemory) {
std::string lhs;
if (convert<std::string>::decode(Node(*this, std::move(pMemory)), lhs)) {
return lhs == rhs;
}
return false;
}
// indexing
template <typename Key>
inline node* node_data::get(const Key& key,
shared_memory_holder pMemory) const {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
return nullptr;
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory))
return pNode;
return nullptr;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
auto it = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
return it != m_map.end() ? it->second : nullptr;
}
template <typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory)) {
m_type = NodeType::Sequence;
return *pNode;
}
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
auto it = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
if (it != m_map.end()) {
return *it->second;
}
node& k = convert_to_node(key, pMemory);
node& v = pMemory->create_node();
insert_map_pair(k, v);
return v;
}
template <typename Key>
inline bool node_data::remove(const Key& key, shared_memory_holder pMemory) {
if (m_type == NodeType::Sequence) {
return remove_idx<Key>::remove(m_sequence, key, m_seqSize);
}
if (m_type == NodeType::Map) {
kv_pairs::iterator it = m_undefinedPairs.begin();
while (it != m_undefinedPairs.end()) {
kv_pairs::iterator jt = std::next(it);
if (it->first->equals(key, pMemory)) {
m_undefinedPairs.erase(it);
}
it = jt;
}
auto iter = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
if (iter != m_map.end()) {
m_map.erase(iter);
return true;
}
}
return false;
}
// map
template <typename Key, typename Value>
inline void node_data::force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadInsert();
}
node& k = convert_to_node(key, pMemory);
node& v = convert_to_node(value, pMemory);
insert_map_pair(k, v);
}
template <typename T>
inline node& node_data::convert_to_node(const T& rhs,
shared_memory_holder pMemory) {
Node value = convert<T>::encode(rhs);
value.EnsureNodeExists();
pMemory->merge(*value.m_pMemory);
return *value.m_pNode;
}
}
}
#endif // NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,96 +1,64 @@
#ifndef VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/ptr.h"
#include <cstddef>
#include <iterator>
#include "yaml-cpp/node/detail/node_iterator.h"
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/utility.hpp>
namespace YAML
{
namespace detail
{
struct iterator_value;
namespace YAML {
namespace detail {
struct iterator_value;
template<typename V>
class iterator_base: public boost::iterator_adaptor<
iterator_base<V>,
node_iterator,
V,
std::forward_iterator_tag,
V>
{
private:
template<typename> friend class iterator_base;
struct enabler {};
typedef typename iterator_base::base_type base_type;
public:
typedef typename iterator_base::value_type value_type;
public:
iterator_base() {}
explicit iterator_base(base_type rhs, shared_memory_holder pMemory): iterator_base::iterator_adaptor_(rhs), m_pMemory(pMemory) {}
template<class W>
iterator_base(const iterator_base<W>& rhs, typename boost::enable_if<boost::is_convertible<W*, V*>, enabler>::type = enabler()): iterator_base::iterator_adaptor_(rhs.base()), m_pMemory(rhs.m_pMemory) {}
private:
friend class boost::iterator_core_access;
template <typename V>
class iterator_base {
void increment() { this->base_reference() = boost::next(this->base()); }
value_type dereference() const {
const typename base_type::value_type& v = *this->base();
if(v.pNode)
return value_type(Node(*v, m_pMemory));
if(v.first && v.second)
return value_type(Node(*v.first, m_pMemory), Node(*v.second, m_pMemory));
return value_type();
}
private:
shared_memory_holder m_pMemory;
};
}
}
private:
template <typename>
friend class iterator_base;
struct enabler {};
using base_type = node_iterator;
struct proxy {
explicit proxy(const V& x) : m_ref(x) {}
V* operator->() { return std::addressof(m_ref); }
operator V*() { return std::addressof(m_ref); }
V m_ref;
};
public:
using iterator_category = std::forward_iterator_tag;
using value_type = V;
using difference_type = std::ptrdiff_t;
using pointer = V*;
using reference = V&;
public:
iterator_base() : m_iterator(), m_pMemory() {}
explicit iterator_base(base_type rhs, shared_memory_holder pMemory)
: m_iterator(rhs), m_pMemory(pMemory) {}
template <class W>
iterator_base(const iterator_base<W>& rhs,
typename std::enable_if<std::is_convertible<W*, V*>::value,
enabler>::type = enabler())
: m_iterator(rhs.m_iterator), m_pMemory(rhs.m_pMemory) {}
iterator_base<V>& operator++() {
++m_iterator;
return *this;
}
iterator_base<V> operator++(int) {
iterator_base<V> iterator_pre(*this);
++(*this);
return iterator_pre;
}
template <typename W>
bool operator==(const iterator_base<W>& rhs) const {
return m_iterator == rhs.m_iterator;
}
template <typename W>
bool operator!=(const iterator_base<W>& rhs) const {
return m_iterator != rhs.m_iterator;
}
value_type operator*() const {
const typename base_type::value_type& v = *m_iterator;
if (v.pNode)
return value_type(Node(*v, m_pMemory));
if (v.first && v.second)
return value_type(Node(*v.first, m_pMemory), Node(*v.second, m_pMemory));
return value_type();
}
proxy operator->() const { return proxy(**this); }
private:
base_type m_iterator;
shared_memory_holder m_pMemory;
};
} // namespace detail
} // namespace YAML
#endif // VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,27 +1,27 @@
#ifndef VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include <list>
#include <utility>
#include <vector>
namespace YAML {
namespace YAML
{
class node;
namespace detail {
struct iterator_value;
template<typename V> class iterator_base;
}
namespace detail {
struct iterator_value;
template <typename V>
class iterator_base;
typedef detail::iterator_base<detail::iterator_value> iterator;
typedef detail::iterator_base<const detail::iterator_value> const_iterator;
}
using iterator = detail::iterator_base<detail::iterator_value>;
using const_iterator = detail::iterator_base<const detail::iterator_value>;
}
#endif // VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,47 +1,39 @@
#ifndef VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <set>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h"
#include <set>
#include <boost/shared_ptr.hpp>
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
namespace YAML
{
namespace detail
{
class memory {
public:
node& create_node();
void merge(const memory& rhs);
private:
typedef std::set<shared_node> Nodes;
Nodes m_nodes;
};
namespace YAML {
namespace detail {
class YAML_CPP_API memory {
public:
memory() : m_nodes{} {}
node& create_node();
void merge(const memory& rhs);
class memory_holder {
public:
memory_holder(): m_pMemory(new memory) {}
node& create_node() { return m_pMemory->create_node(); }
void merge(memory_holder& rhs);
private:
boost::shared_ptr<memory> m_pMemory;
};
}
}
private:
using Nodes = std::set<shared_node>;
Nodes m_nodes;
};
class YAML_CPP_API memory_holder {
public:
memory_holder() : m_pMemory(new memory) {}
node& create_node() { return m_pMemory->create_node(); }
void merge(memory_holder& rhs);
private:
shared_memory m_pMemory;
};
} // namespace detail
} // namespace YAML
#endif // VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,177 +1,126 @@
#ifndef NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/node/detail/node_ref.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node_ref.h"
#include <set>
#include <atomic>
#include <boost/utility.hpp>
namespace YAML {
namespace detail {
class node {
private:
struct less {
bool operator ()(const node* l, const node* r) const {return l->m_index < r->m_index;}
};
namespace YAML
{
namespace detail
{
class node: private boost::noncopyable
{
public:
node(): m_pRef(new node_ref) {}
public:
node() : m_pRef(new node_ref), m_dependencies{}, m_index{} {}
node(const node&) = delete;
node& operator=(const node&) = delete;
bool is(const node& rhs) const { return m_pRef == rhs.m_pRef; }
const node_ref *ref() const { return m_pRef.get(); }
bool is_defined() const { return m_pRef->is_defined(); }
NodeType::value type() const { return m_pRef->type(); }
const std::string& scalar() const { return m_pRef->scalar(); }
const std::string& tag() const { return m_pRef->tag(); }
void mark_defined() {
if(is_defined())
return;
m_pRef->mark_defined();
for(nodes::iterator it=m_dependencies.begin();it!=m_dependencies.end();++it)
(*it)->mark_defined();
m_dependencies.clear();
}
void add_dependency(node& rhs) {
if(is_defined())
rhs.mark_defined();
else
m_dependencies.insert(&rhs);
}
void set_ref(const node& rhs) {
if(rhs.is_defined())
mark_defined();
m_pRef = rhs.m_pRef;
}
void set_data(const node& rhs) {
if(rhs.is_defined())
mark_defined();
m_pRef->set_data(*rhs.m_pRef);
}
void set_type(NodeType::value type) {
if(type != NodeType::Undefined)
mark_defined();
m_pRef->set_type(type);
}
void set_null() {
mark_defined();
m_pRef->set_null();
}
void set_scalar(const std::string& scalar) {
mark_defined();
m_pRef->set_scalar(scalar);
}
void set_tag(const std::string& tag) {
mark_defined();
m_pRef->set_tag(tag);
}
bool is(const node& rhs) const { return m_pRef == rhs.m_pRef; }
const node_ref* ref() const { return m_pRef.get(); }
// size/iterator
std::size_t size() const { return m_pRef->size(); }
const_node_iterator begin() const { return static_cast<const node_ref&>(*m_pRef).begin(); }
node_iterator begin() { return m_pRef->begin(); }
const_node_iterator end() const { return static_cast<const node_ref&>(*m_pRef).end(); }
node_iterator end() { return m_pRef->end(); }
bool is_defined() const { return m_pRef->is_defined(); }
const Mark& mark() const { return m_pRef->mark(); }
NodeType::value type() const { return m_pRef->type(); }
// sequence
void push_back(node& node, shared_memory_holder pMemory) {
m_pRef->push_back(node, pMemory);
node.add_dependency(*this);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pRef->insert(key, value, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
}
const std::string& scalar() const { return m_pRef->scalar(); }
const std::string& tag() const { return m_pRef->tag(); }
EmitterStyle::value style() const { return m_pRef->style(); }
// indexing
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const { return static_cast<const node_ref&>(*m_pRef).get(key, pMemory); }
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
value.add_dependency(*this);
return value;
}
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory) { return m_pRef->remove(key, pMemory); }
node& get(node& key, shared_memory_holder pMemory) const { return static_cast<const node_ref&>(*m_pRef).get(key, pMemory); }
node& get(node& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
return value;
}
bool remove(node& key, shared_memory_holder pMemory) { return m_pRef->remove(key, pMemory); }
template <typename T>
bool equals(const T& rhs, shared_memory_holder pMemory);
bool equals(const char* rhs, shared_memory_holder pMemory);
private:
shared_node_ref m_pRef;
typedef std::set<node *> nodes;
nodes m_dependencies;
};
}
}
void mark_defined() {
if (is_defined())
return;
m_pRef->mark_defined();
for (node* dependency : m_dependencies)
dependency->mark_defined();
m_dependencies.clear();
}
void add_dependency(node& rhs) {
if (is_defined())
rhs.mark_defined();
else
m_dependencies.insert(&rhs);
}
void set_ref(const node& rhs) {
if (rhs.is_defined())
mark_defined();
m_pRef = rhs.m_pRef;
}
void set_data(const node& rhs) {
if (rhs.is_defined())
mark_defined();
m_pRef->set_data(*rhs.m_pRef);
}
void set_mark(const Mark& mark) { m_pRef->set_mark(mark); }
void set_type(NodeType::value type) {
if (type != NodeType::Undefined)
mark_defined();
m_pRef->set_type(type);
}
void set_null() {
mark_defined();
m_pRef->set_null();
}
void set_scalar(const std::string& scalar) {
mark_defined();
m_pRef->set_scalar(scalar);
}
void set_tag(const std::string& tag) {
mark_defined();
m_pRef->set_tag(tag);
}
// style
void set_style(EmitterStyle::value style) {
mark_defined();
m_pRef->set_style(style);
}
// size/iterator
std::size_t size() const { return m_pRef->size(); }
const_node_iterator begin() const {
return static_cast<const node_ref&>(*m_pRef).begin();
}
node_iterator begin() { return m_pRef->begin(); }
const_node_iterator end() const {
return static_cast<const node_ref&>(*m_pRef).end();
}
node_iterator end() { return m_pRef->end(); }
// sequence
void push_back(node& input, shared_memory_holder pMemory) {
m_pRef->push_back(input, pMemory);
input.add_dependency(*this);
m_index = m_amount.fetch_add(1);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pRef->insert(key, value, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
}
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const {
// NOTE: this returns a non-const node so that the top-level Node can wrap
// it, and returns a pointer so that it can be nullptr (if there is no such
// key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
value.add_dependency(*this);
return value;
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
node* get(node& key, shared_memory_holder pMemory) const {
// NOTE: this returns a non-const node so that the top-level Node can wrap
// it, and returns a pointer so that it can be nullptr (if there is no such
// key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
return value;
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pRef->force_insert(key, value, pMemory);
}
private:
shared_node_ref m_pRef;
using nodes = std::set<node*, less>;
nodes m_dependencies;
size_t m_index;
static YAML_CPP_API std::atomic<size_t> m_amount;
};
} // namespace detail
} // namespace YAML
#endif // NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,127 +1,105 @@
#ifndef VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include <boost/utility.hpp>
#include <list>
#include <utility>
#include <vector>
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
namespace YAML
{
namespace detail
{
class node_data: private boost::noncopyable
{
public:
node_data();
void mark_defined();
void set_type(NodeType::value type);
void set_tag(const std::string& tag);
void set_null();
void set_scalar(const std::string& scalar);
bool is_defined() const { return m_isDefined; }
NodeType::value type() const { return m_isDefined ? m_type : NodeType::Undefined; }
const std::string& scalar() const { return m_scalar; }
const std::string& tag() const { return m_tag; }
// size/iterator
std::size_t size() const;
const_node_iterator begin() const;
node_iterator begin();
const_node_iterator end() const;
node_iterator end();
namespace YAML {
namespace detail {
class YAML_CPP_API node_data {
public:
node_data();
node_data(const node_data&) = delete;
node_data& operator=(const node_data&) = delete;
// sequence
void push_back(node& node, shared_memory_holder pMemory);
void insert(node& key, node& value, shared_memory_holder pMemory);
void mark_defined();
void set_mark(const Mark& mark);
void set_type(NodeType::value type);
void set_tag(const std::string& tag);
void set_null();
void set_scalar(const std::string& scalar);
void set_style(EmitterStyle::value style);
// indexing
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const;
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory);
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory);
node& get(node& key, shared_memory_holder pMemory) const;
node& get(node& key, shared_memory_holder pMemory);
bool remove(node& key, shared_memory_holder pMemory);
public:
static std::string empty_scalar;
private:
void compute_seq_size() const;
void compute_map_size() const;
bool is_defined() const { return m_isDefined; }
const Mark& mark() const { return m_mark; }
NodeType::value type() const {
return m_isDefined ? m_type : NodeType::Undefined;
}
const std::string& scalar() const { return m_scalar; }
const std::string& tag() const { return m_tag; }
EmitterStyle::value style() const { return m_style; }
void reset_sequence();
void reset_map();
void insert_map_pair(node& key, node& value);
void convert_to_map(shared_memory_holder pMemory);
void convert_sequence_to_map(shared_memory_holder pMemory);
template<typename T>
static bool equals(node& node, const T& rhs, shared_memory_holder pMemory);
template<typename T>
static node& convert_to_node(const T& rhs, shared_memory_holder pMemory);
// size/iterator
std::size_t size() const;
const_node_iterator begin() const;
node_iterator begin();
const_node_iterator end() const;
node_iterator end();
// sequence
void push_back(node& node, const shared_memory_holder& pMemory);
void insert(node& key, node& value, const shared_memory_holder& pMemory);
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const;
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory);
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory);
node* get(node& key, const shared_memory_holder& pMemory) const;
node& get(node& key, const shared_memory_holder& pMemory);
bool remove(node& key, const shared_memory_holder& pMemory);
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory);
public:
static const std::string& empty_scalar();
private:
void compute_seq_size() const;
void compute_map_size() const;
void reset_sequence();
void reset_map();
void insert_map_pair(node& key, node& value);
void convert_to_map(const shared_memory_holder& pMemory);
void convert_sequence_to_map(const shared_memory_holder& pMemory);
template <typename T>
static node& convert_to_node(const T& rhs, shared_memory_holder pMemory);
private:
bool m_isDefined;
Mark m_mark;
NodeType::value m_type;
std::string m_tag;
EmitterStyle::value m_style;
// scalar
std::string m_scalar;
// sequence
using node_seq = std::vector<node *>;
node_seq m_sequence;
mutable std::size_t m_seqSize;
// map
using node_map = std::vector<std::pair<node*, node*>>;
node_map m_map;
using kv_pair = std::pair<node*, node*>;
using kv_pairs = std::list<kv_pair>;
mutable kv_pairs m_undefinedPairs;
};
}
private:
bool m_isDefined;
NodeType::value m_type;
std::string m_tag;
// scalar
std::string m_scalar;
// sequence
typedef std::vector<node *> node_seq;
node_seq m_sequence;
mutable std::size_t m_seqSize;
// map
typedef std::map<node *, node *> node_map;
node_map m_map;
typedef std::pair<node *, node *> kv_pair;
typedef std::list<kv_pair> kv_pairs;
mutable kv_pairs m_undefinedPairs;
};
}
}
#endif // VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,181 +1,139 @@
#ifndef VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h"
#include <cstddef>
#include <iterator>
#include <memory>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/utility/enable_if.hpp>
#include <map>
#include <utility>
#include <vector>
namespace YAML {
namespace detail {
struct iterator_type {
enum value { NoneType, Sequence, Map };
};
namespace YAML
{
namespace detail
{
struct iterator_type { enum value { None, Sequence, Map }; };
template<typename V>
struct node_iterator_value: public std::pair<V*, V*> {
typedef std::pair<V*, V*> kv;
node_iterator_value(): kv(), pNode(0) {}
explicit node_iterator_value(V& rhs): kv(), pNode(&rhs) {}
explicit node_iterator_value(V& key, V& value): kv(&key, &value), pNode(0) {}
V& operator *() const { return *pNode; }
V& operator ->() const { return *pNode; }
V *pNode;
};
typedef std::vector<node *> node_seq;
typedef std::map<node *, node *> node_map;
template<typename V>
struct node_iterator_type {
typedef node_seq::iterator seq;
typedef node_map::iterator map;
};
template<typename V>
struct node_iterator_type<const V> {
typedef node_seq::const_iterator seq;
typedef node_map::const_iterator map;
};
template <typename V>
struct node_iterator_value : public std::pair<V*, V*> {
using kv = std::pair<V*, V*>;
template<typename V>
class node_iterator_base: public boost::iterator_facade<
node_iterator_base<V>,
node_iterator_value<V>,
std::forward_iterator_tag,
node_iterator_value<V> >
{
private:
struct enabler {};
public:
typedef typename node_iterator_type<V>::seq SeqIter;
typedef typename node_iterator_type<V>::map MapIter;
typedef node_iterator_value<V> value_type;
node_iterator_base(): m_type(iterator_type::None) {}
explicit node_iterator_base(SeqIter seqIt): m_type(iterator_type::Sequence), m_seqIt(seqIt) {}
explicit node_iterator_base(MapIter mapIt, MapIter mapEnd): m_type(iterator_type::Map), m_mapIt(mapIt), m_mapEnd(mapEnd) {
m_mapIt = increment_until_defined(m_mapIt);
}
template<typename W>
node_iterator_base(const node_iterator_base<W>& rhs, typename boost::enable_if<boost::is_convertible<W*, V*>, enabler>::type = enabler())
: m_type(rhs.m_type), m_seqIt(rhs.m_seqIt), m_mapIt(rhs.m_mapIt), m_mapEnd(rhs.m_mapEnd) {}
private:
friend class boost::iterator_core_access;
template<typename> friend class node_iterator_base;
template<typename W>
bool equal(const node_iterator_base<W>& rhs) const {
if(m_type != rhs.m_type)
return false;
switch(m_type) {
case iterator_type::None: return true;
case iterator_type::Sequence: return m_seqIt == rhs.m_seqIt;
case iterator_type::Map: return m_mapIt == rhs.m_mapIt;
}
return true;
}
void increment() {
switch(m_type) {
case iterator_type::None: break;
case iterator_type::Sequence:
++m_seqIt;
break;
case iterator_type::Map:
++m_mapIt;
m_mapIt = increment_until_defined(m_mapIt);
break;
}
}
node_iterator_value() : kv(), pNode(nullptr) {}
explicit node_iterator_value(V& rhs) : kv(), pNode(&rhs) {}
explicit node_iterator_value(V& key, V& value) : kv(&key, &value), pNode(nullptr) {}
value_type dereference() const {
switch(m_type) {
case iterator_type::None: return value_type();
case iterator_type::Sequence: return value_type(**m_seqIt);
case iterator_type::Map: return value_type(*m_mapIt->first, *m_mapIt->second);
}
return value_type();
}
MapIter increment_until_defined(MapIter it) {
while(it != m_mapEnd && !is_defined(it))
++it;
return it;
}
bool is_defined(MapIter it) const {
return it->first->is_defined() && it->second->is_defined();
}
V& operator*() const { return *pNode; }
V& operator->() const { return *pNode; }
private:
typename iterator_type::value m_type;
V* pNode;
};
SeqIter m_seqIt;
MapIter m_mapIt, m_mapEnd;
};
using node_seq = std::vector<node *>;
using node_map = std::vector<std::pair<node*, node*>>;
template <typename V>
struct node_iterator_type {
using seq = node_seq::iterator;
using map = node_map::iterator;
};
template <typename V>
struct node_iterator_type<const V> {
using seq = node_seq::const_iterator;
using map = node_map::const_iterator;
};
template <typename V>
class node_iterator_base {
private:
struct enabler {};
struct proxy {
explicit proxy(const node_iterator_value<V>& x) : m_ref(x) {}
node_iterator_value<V>* operator->() { return std::addressof(m_ref); }
operator node_iterator_value<V>*() { return std::addressof(m_ref); }
node_iterator_value<V> m_ref;
};
public:
using iterator_category = std::forward_iterator_tag;
using value_type = node_iterator_value<V>;
using difference_type = std::ptrdiff_t;
using pointer = node_iterator_value<V>*;
using reference = node_iterator_value<V>&;
using SeqIter = typename node_iterator_type<V>::seq;
using MapIter = typename node_iterator_type<V>::map;
node_iterator_base()
: m_type(iterator_type::NoneType), m_seqIt(), m_mapIt(), m_mapEnd() {}
explicit node_iterator_base(SeqIter seqIt)
: m_type(iterator_type::Sequence),
m_seqIt(seqIt),
m_mapIt(),
m_mapEnd() {}
explicit node_iterator_base(MapIter mapIt, MapIter mapEnd)
: m_type(iterator_type::Map),
m_seqIt(),
m_mapIt(mapIt),
m_mapEnd(mapEnd) {
m_mapIt = increment_until_defined(m_mapIt);
}
template <typename W>
node_iterator_base(const node_iterator_base<W>& rhs,
typename std::enable_if<std::is_convertible<W*, V*>::value,
enabler>::type = enabler())
: m_type(rhs.m_type),
m_seqIt(rhs.m_seqIt),
m_mapIt(rhs.m_mapIt),
m_mapEnd(rhs.m_mapEnd) {}
template <typename>
friend class node_iterator_base;
template <typename W>
bool operator==(const node_iterator_base<W>& rhs) const {
if (m_type != rhs.m_type)
return false;
switch (m_type) {
case iterator_type::NoneType:
return true;
case iterator_type::Sequence:
return m_seqIt == rhs.m_seqIt;
case iterator_type::Map:
return m_mapIt == rhs.m_mapIt;
}
return true;
}
template <typename W>
bool operator!=(const node_iterator_base<W>& rhs) const {
return !(*this == rhs);
}
node_iterator_base<V>& operator++() {
switch (m_type) {
case iterator_type::NoneType:
break;
case iterator_type::Sequence:
++m_seqIt;
break;
case iterator_type::Map:
++m_mapIt;
m_mapIt = increment_until_defined(m_mapIt);
break;
}
return *this;
}
node_iterator_base<V> operator++(int) {
node_iterator_base<V> iterator_pre(*this);
++(*this);
return iterator_pre;
}
value_type operator*() const {
switch (m_type) {
case iterator_type::NoneType:
return value_type();
case iterator_type::Sequence:
return value_type(**m_seqIt);
case iterator_type::Map:
return value_type(*m_mapIt->first, *m_mapIt->second);
}
return value_type();
}
proxy operator->() const { return proxy(**this); }
MapIter increment_until_defined(MapIter it) {
while (it != m_mapEnd && !is_defined(it))
++it;
return it;
}
bool is_defined(MapIter it) const {
return it->first->is_defined() && it->second->is_defined();
}
private:
typename iterator_type::value m_type;
SeqIter m_seqIt;
MapIter m_mapIt, m_mapEnd;
};
using node_iterator = node_iterator_base<node>;
using const_node_iterator = node_iterator_base<const node>;
}
typedef node_iterator_base<node> node_iterator;
typedef node_iterator_base<const node> const_node_iterator;
}
}
#endif // VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,98 +1,65 @@
#ifndef VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node_data.h"
#include <boost/utility.hpp>
namespace YAML {
namespace detail {
class node_ref {
public:
node_ref() : m_pData(new node_data) {}
node_ref(const node_ref&) = delete;
node_ref& operator=(const node_ref&) = delete;
namespace YAML
{
namespace detail
{
class node_ref: private boost::noncopyable
{
public:
node_ref(): m_pData(new node_data) {}
bool is_defined() const { return m_pData->is_defined(); }
NodeType::value type() const { return m_pData->type(); }
const std::string& scalar() const { return m_pData->scalar(); }
const std::string& tag() const { return m_pData->tag(); }
void mark_defined() { m_pData->mark_defined(); }
void set_data(const node_ref& rhs) { m_pData = rhs.m_pData; }
void set_type(NodeType::value type) { m_pData->set_type(type); }
void set_tag(const std::string& tag) { m_pData->set_tag(tag); }
void set_null() { m_pData->set_null(); }
void set_scalar(const std::string& scalar) { m_pData->set_scalar(scalar); }
// size/iterator
std::size_t size() const { return m_pData->size(); }
const_node_iterator begin() const { return static_cast<const node_data&>(*m_pData).begin(); }
node_iterator begin() {return m_pData->begin(); }
const_node_iterator end() const { return static_cast<const node_data&>(*m_pData).end(); }
node_iterator end() {return m_pData->end(); }
bool is_defined() const { return m_pData->is_defined(); }
const Mark& mark() const { return m_pData->mark(); }
NodeType::value type() const { return m_pData->type(); }
const std::string& scalar() const { return m_pData->scalar(); }
const std::string& tag() const { return m_pData->tag(); }
EmitterStyle::value style() const { return m_pData->style(); }
// sequence
void push_back(node& node, shared_memory_holder pMemory) { m_pData->push_back(node, pMemory); }
void insert(node& key, node& value, shared_memory_holder pMemory) { m_pData->insert(key, value, pMemory); }
// indexing
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const { return static_cast<const node_data&>(*m_pData).get(key, pMemory); }
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) { return m_pData->get(key, pMemory); }
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory) { return m_pData->remove(key, pMemory); }
node& get(node& key, shared_memory_holder pMemory) const { return static_cast<const node_data&>(*m_pData).get(key, pMemory); }
node& get(node& key, shared_memory_holder pMemory) { return m_pData->get(key, pMemory); }
bool remove(node& key, shared_memory_holder pMemory) { return m_pData->remove(key, pMemory); }
void mark_defined() { m_pData->mark_defined(); }
void set_data(const node_ref& rhs) { m_pData = rhs.m_pData; }
void set_mark(const Mark& mark) { m_pData->set_mark(mark); }
void set_type(NodeType::value type) { m_pData->set_type(type); }
void set_tag(const std::string& tag) { m_pData->set_tag(tag); }
void set_null() { m_pData->set_null(); }
void set_scalar(const std::string& scalar) { m_pData->set_scalar(scalar); }
void set_style(EmitterStyle::value style) { m_pData->set_style(style); }
// size/iterator
std::size_t size() const { return m_pData->size(); }
const_node_iterator begin() const {
return static_cast<const node_data&>(*m_pData).begin();
}
node_iterator begin() { return m_pData->begin(); }
const_node_iterator end() const {
return static_cast<const node_data&>(*m_pData).end();
}
node_iterator end() { return m_pData->end(); }
// sequence
void push_back(node& node, shared_memory_holder pMemory) {
m_pData->push_back(node, pMemory);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pData->insert(key, value, pMemory);
}
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const {
return static_cast<const node_data&>(*m_pData).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
node* get(node& key, shared_memory_holder pMemory) const {
return static_cast<const node_data&>(*m_pData).get(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pData->force_insert(key, value, pMemory);
}
private:
shared_node_data m_pData;
};
}
private:
shared_node_data m_pData;
};
}
}
#endif // VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,32 +1,23 @@
#ifndef NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <iosfwd>
#include "yaml-cpp/dll.h"
namespace YAML
{
class Emitter;
class Node;
Emitter& operator << (Emitter& out, const Node& node);
std::ostream& operator << (std::ostream& out, const Node& node);
std::string Dump(const Node& node);
}
namespace YAML {
class Emitter;
class Node;
#endif // NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
/**
* Emits the node to the given {@link Emitter}. If there is an error in writing,
* {@link Emitter#good} will return false.
*/
YAML_CPP_API Emitter& operator<<(Emitter& out, const Node& node);
/** Emits the node to the given output stream. */
YAML_CPP_API std::ostream& operator<<(std::ostream& out, const Node& node);
/** Converts the node to a YAML string. */
YAML_CPP_API std::string Dump(const Node& node);
} // namespace YAML
#endif // NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,387 +1,355 @@
#ifndef NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/node.h"
#include <sstream>
#include "yaml-cpp/exceptions.h"
#include <string>
namespace YAML {
inline Node::Node()
: m_isValid(true), m_invalidKey{}, m_pMemory(nullptr), m_pNode(nullptr) {}
namespace YAML
{
inline Node::Node(): m_pNode(0)
{
}
inline Node::Node(NodeType::value type): m_pMemory(new detail::memory_holder), m_pNode(&m_pMemory->create_node())
{
m_pNode->set_type(type);
}
template<typename T>
inline Node::Node(const T& rhs): m_pMemory(new detail::memory_holder), m_pNode(&m_pMemory->create_node())
{
Assign(rhs);
}
inline Node::Node(const detail::iterator_value& rhs): m_pMemory(rhs.m_pMemory), m_pNode(rhs.m_pNode)
{
}
inline Node::Node(NodeType::value type)
: m_isValid(true),
m_invalidKey{},
m_pMemory(new detail::memory_holder),
m_pNode(&m_pMemory->create_node()) {
m_pNode->set_type(type);
inline Node::Node(const Node& rhs): m_pMemory(rhs.m_pMemory), m_pNode(rhs.m_pNode)
{
}
inline Node::Node(detail::node& node, detail::shared_memory_holder pMemory): m_pMemory(pMemory), m_pNode(&node)
{
}
inline Node::~Node()
{
}
inline void Node::EnsureNodeExists() const
{
if(!m_pNode) {
m_pMemory.reset(new detail::memory_holder);
m_pNode = &m_pMemory->create_node();
m_pNode->set_null();
}
}
inline bool Node::IsDefined() const
{
return m_pNode ? m_pNode->is_defined() : true;
}
inline NodeType::value Node::Type() const
{
return m_pNode ? m_pNode->type() : NodeType::Null;
}
// access
// template helpers
template<typename T, typename S>
struct as_if {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const T operator()(const S& fallback) const {
if(!node.m_pNode)
return fallback;
T t;
if(convert<T>::decode(node, t))
return t;
return fallback;
}
};
template<typename S>
struct as_if<std::string, S> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const std::string operator()(const S& fallback) const {
if(node.Type() != NodeType::Scalar)
return fallback;
return node.Scalar();
}
};
template<typename T>
struct as_if<T, void> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const T operator()() const {
if(!node.m_pNode)
throw TypedBadConversion<T>();
T t;
if(convert<T>::decode(node, t))
return t;
throw TypedBadConversion<T>();
}
};
template<>
struct as_if<std::string, void> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const std::string operator()() const {
if(node.Type() != NodeType::Scalar)
throw TypedBadConversion<std::string>();
return node.Scalar();
}
};
// access functions
template<typename T>
inline const T Node::as() const
{
return as_if<T, void>(*this)();
}
template<typename T, typename S>
inline const T Node::as(const S& fallback) const
{
return as_if<T, S>(*this)(fallback);
}
inline const std::string& Node::Scalar() const
{
return m_pNode ? m_pNode->scalar() : detail::node_data::empty_scalar;
}
inline const std::string& Node::Tag() const
{
return m_pNode ? m_pNode->tag() : detail::node_data::empty_scalar;
}
inline void Node::SetTag(const std::string& tag)
{
EnsureNodeExists();
m_pNode->set_tag(tag);
}
// assignment
inline bool Node::is(const Node& rhs) const
{
if(!m_pNode || !rhs.m_pNode)
return false;
return m_pNode->is(*rhs.m_pNode);
}
template<typename T>
inline Node& Node::operator=(const T& rhs)
{
Assign(rhs);
return *this;
}
template<typename T>
inline void Node::Assign(const T& rhs)
{
AssignData(convert<T>::encode(rhs));
}
template<>
inline void Node::Assign(const std::string& rhs)
{
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(const char *rhs)
{
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(char *rhs)
{
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline Node& Node::operator=(const Node& rhs)
{
if(is(rhs))
return *this;
AssignNode(rhs);
return *this;
}
inline void Node::AssignData(const Node& rhs)
{
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->set_data(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
}
inline void Node::AssignNode(const Node& rhs)
{
rhs.EnsureNodeExists();
if(!m_pNode) {
m_pNode = rhs.m_pNode;
m_pMemory = rhs.m_pMemory;
return;
}
m_pNode->set_ref(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
m_pNode = rhs.m_pNode;
}
// size/iterator
inline std::size_t Node::size() const
{
return m_pNode ? m_pNode->size() : 0;
}
inline const_iterator Node::begin() const
{
return m_pNode ? const_iterator(m_pNode->begin(), m_pMemory) : const_iterator();
}
inline iterator Node::begin()
{
return m_pNode ? iterator(m_pNode->begin(), m_pMemory) : iterator();
}
inline const_iterator Node::end() const
{
return m_pNode ? const_iterator(m_pNode->end(), m_pMemory) : const_iterator();
}
inline iterator Node::end()
{
return m_pNode ? iterator(m_pNode->end(), m_pMemory) : iterator();
}
// sequence
template<typename T>
inline void Node::push_back(const T& rhs)
{
push_back(Node(rhs));
}
inline void Node::push_back(const Node& rhs)
{
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->push_back(*rhs.m_pNode, m_pMemory);
m_pMemory->merge(*rhs.m_pMemory);
}
// indexing
template<typename Key>
inline const Node Node::operator[](const Key& key) const
{
EnsureNodeExists();
detail::node& value = static_cast<const detail::node&>(*m_pNode).get(key, m_pMemory);
return Node(value, m_pMemory);
}
template<typename Key>
inline Node Node::operator[](const Key& key)
{
EnsureNodeExists();
detail::node& value = m_pNode->get(key, m_pMemory);
return Node(value, m_pMemory);
}
template<typename Key>
inline bool Node::remove(const Key& key)
{
EnsureNodeExists();
return m_pNode->remove(key, m_pMemory);
}
inline const Node Node::operator[](const Node& key) const
{
EnsureNodeExists();
key.EnsureNodeExists();
detail::node& value = static_cast<const detail::node&>(*m_pNode).get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline Node Node::operator[](const Node& key)
{
EnsureNodeExists();
key.EnsureNodeExists();
detail::node& value = m_pNode->get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline bool Node::remove(const Node& key)
{
EnsureNodeExists();
key.EnsureNodeExists();
return m_pNode->remove(*key.m_pNode, m_pMemory);
}
inline const Node Node::operator[](const char *key) const
{
return operator[](std::string(key));
}
inline Node Node::operator[](const char *key)
{
return operator[](std::string(key));
}
inline bool Node::remove(const char *key)
{
return remove(std::string(key));
}
inline const Node Node::operator[](char *key) const
{
return operator[](static_cast<const char *>(key));
}
inline Node Node::operator[](char *key)
{
return operator[](static_cast<const char *>(key));
}
inline bool Node::remove(char *key)
{
return remove(static_cast<const char *>(key));
}
// free functions
inline bool operator==(const Node& lhs, const Node& rhs)
{
return lhs.is(rhs);
}
}
template <typename T>
inline Node::Node(const T& rhs)
: m_isValid(true),
m_invalidKey{},
m_pMemory(new detail::memory_holder),
m_pNode(&m_pMemory->create_node()) {
Assign(rhs);
}
inline Node::Node(const detail::iterator_value& rhs)
: m_isValid(rhs.m_isValid),
m_invalidKey(rhs.m_invalidKey),
m_pMemory(rhs.m_pMemory),
m_pNode(rhs.m_pNode) {}
inline Node::Node(const Node&) = default;
inline Node::Node(Zombie)
: m_isValid(false), m_invalidKey{}, m_pMemory{}, m_pNode(nullptr) {}
inline Node::Node(Zombie, const std::string& key)
: m_isValid(false), m_invalidKey(key), m_pMemory{}, m_pNode(nullptr) {}
inline Node::Node(detail::node& node, detail::shared_memory_holder pMemory)
: m_isValid(true), m_invalidKey{}, m_pMemory(pMemory), m_pNode(&node) {}
inline Node::~Node() = default;
inline void Node::EnsureNodeExists() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
if (!m_pNode) {
m_pMemory.reset(new detail::memory_holder);
m_pNode = &m_pMemory->create_node();
m_pNode->set_null();
}
}
inline bool Node::IsDefined() const {
if (!m_isValid) {
return false;
}
return m_pNode ? m_pNode->is_defined() : true;
}
inline Mark Node::Mark() const {
if (!m_isValid) {
throw InvalidNode(m_invalidKey);
}
return m_pNode ? m_pNode->mark() : Mark::null_mark();
}
inline NodeType::value Node::Type() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->type() : NodeType::Null;
}
// access
// template helpers
template <typename T, typename S>
struct as_if {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
T operator()(const S& fallback) const {
if (!node.m_pNode)
return fallback;
T t = fallback;
if (convert<T>::decode(node, t))
return t;
return fallback;
}
};
template <typename S>
struct as_if<std::string, S> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
std::string operator()(const S& fallback) const {
if (node.Type() == NodeType::Null)
return "null";
if (node.Type() != NodeType::Scalar)
return fallback;
return node.Scalar();
}
};
template <typename T>
struct as_if<T, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
T operator()() const {
if (!node.m_pNode) // no fallback
throw InvalidNode(node.m_invalidKey);
T t;
if (convert<T>::decode(node, t))
return t;
throw TypedBadConversion<T>(node.Mark());
}
};
template <>
struct as_if<std::string, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
std::string operator()() const {
if (node.Type() == NodeType::Undefined) // no fallback
throw InvalidNode(node.m_invalidKey);
if (node.Type() == NodeType::Null)
return "null";
if (node.Type() != NodeType::Scalar)
throw TypedBadConversion<std::string>(node.Mark());
return node.Scalar();
}
};
// access functions
template <typename T>
inline T Node::as() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return as_if<T, void>(*this)();
}
template <typename T, typename S>
inline T Node::as(const S& fallback) const {
if (!m_isValid)
return fallback;
return as_if<T, S>(*this)(fallback);
}
inline const std::string& Node::Scalar() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->scalar() : detail::node_data::empty_scalar();
}
inline const std::string& Node::Tag() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->tag() : detail::node_data::empty_scalar();
}
inline void Node::SetTag(const std::string& tag) {
EnsureNodeExists();
m_pNode->set_tag(tag);
}
inline EmitterStyle::value Node::Style() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->style() : EmitterStyle::Default;
}
inline void Node::SetStyle(EmitterStyle::value style) {
EnsureNodeExists();
m_pNode->set_style(style);
}
// assignment
inline bool Node::is(const Node& rhs) const {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode(m_invalidKey);
if (!m_pNode || !rhs.m_pNode)
return false;
return m_pNode->is(*rhs.m_pNode);
}
template <typename T>
inline Node& Node::operator=(const T& rhs) {
Assign(rhs);
return *this;
}
inline Node& Node::operator=(const Node& rhs) {
if (is(rhs))
return *this;
AssignNode(rhs);
return *this;
}
inline void Node::reset(const YAML::Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode(m_invalidKey);
m_pMemory = rhs.m_pMemory;
m_pNode = rhs.m_pNode;
}
template <typename T>
inline void Node::Assign(const T& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
AssignData(convert<T>::encode(rhs));
}
template <>
inline void Node::Assign(const std::string& rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(const char* rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(char* rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::AssignData(const Node& rhs) {
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->set_data(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
}
inline void Node::AssignNode(const Node& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
rhs.EnsureNodeExists();
if (!m_pNode) {
m_pNode = rhs.m_pNode;
m_pMemory = rhs.m_pMemory;
return;
}
m_pNode->set_ref(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
m_pNode = rhs.m_pNode;
}
// size/iterator
inline std::size_t Node::size() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->size() : 0;
}
inline const_iterator Node::begin() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->begin(), m_pMemory)
: const_iterator();
}
inline iterator Node::begin() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->begin(), m_pMemory) : iterator();
}
inline const_iterator Node::end() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->end(), m_pMemory) : const_iterator();
}
inline iterator Node::end() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->end(), m_pMemory) : iterator();
}
// sequence
template <typename T>
inline void Node::push_back(const T& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
push_back(Node(rhs));
}
inline void Node::push_back(const Node& rhs) {
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->push_back(*rhs.m_pNode, m_pMemory);
m_pMemory->merge(*rhs.m_pMemory);
}
template<typename Key>
std::string key_to_string(const Key& key) {
return streamable_to_string<Key, is_streamable<std::stringstream, Key>::value>().impl(key);
}
// indexing
template <typename Key>
inline const Node Node::operator[](const Key& key) const {
EnsureNodeExists();
detail::node* value =
static_cast<const detail::node&>(*m_pNode).get(key, m_pMemory);
if (!value) {
return Node(ZombieNode, key_to_string(key));
}
return Node(*value, m_pMemory);
}
template <typename Key>
inline Node Node::operator[](const Key& key) {
EnsureNodeExists();
detail::node& value = m_pNode->get(key, m_pMemory);
return Node(value, m_pMemory);
}
template <typename Key>
inline bool Node::remove(const Key& key) {
EnsureNodeExists();
return m_pNode->remove(key, m_pMemory);
}
inline const Node Node::operator[](const Node& key) const {
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node* value =
static_cast<const detail::node&>(*m_pNode).get(*key.m_pNode, m_pMemory);
if (!value) {
return Node(ZombieNode, key_to_string(key));
}
return Node(*value, m_pMemory);
}
inline Node Node::operator[](const Node& key) {
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node& value = m_pNode->get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline bool Node::remove(const Node& key) {
EnsureNodeExists();
key.EnsureNodeExists();
return m_pNode->remove(*key.m_pNode, m_pMemory);
}
// map
template <typename Key, typename Value>
inline void Node::force_insert(const Key& key, const Value& value) {
EnsureNodeExists();
m_pNode->force_insert(key, value, m_pMemory);
}
// free functions
inline bool operator==(const Node& lhs, const Node& rhs) { return lhs.is(rhs); }
} // namespace YAML
#endif // NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,12 +1,11 @@
#ifndef VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
@ -15,20 +14,15 @@
#include <utility>
#include <vector>
// Assert in place so gcc + libc++ combination properly builds
static_assert(std::is_constructible<YAML::Node, const YAML::Node&>::value, "Node must be copy constructable");
namespace YAML {
namespace detail {
struct iterator_value : public Node, std::pair<Node, Node> {
iterator_value() = default;
explicit iterator_value(const Node& rhs)
: Node(rhs),
std::pair<Node, Node>(Node(Node::ZombieNode), Node(Node::ZombieNode)) {}
explicit iterator_value(const Node& key, const Node& value)
: Node(Node::ZombieNode), std::pair<Node, Node>(key, value) {}
};
}
namespace YAML
{
namespace detail {
struct iterator_value: public Node, std::pair<Node, Node> {
iterator_value() {}
explicit iterator_value(const Node& rhs): Node(rhs) {}
explicit iterator_value(const Node& key, const Node& value): std::pair<Node, Node>(key, value) {}
};
}
}
#endif // VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,148 +1,113 @@
#ifndef NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <stdexcept>
#include <string>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
#include "yaml-cpp/node/detail/bool_type.h"
#include <stdexcept>
namespace YAML {
namespace detail {
class node;
class node_data;
struct iterator_value;
} // namespace detail
} // namespace YAML
namespace YAML
{
class Node
{
public:
friend class NodeBuilder;
friend class NodeEvents;
friend class detail::node_data;
template<typename> friend class detail::iterator_base;
template<typename T, typename S> friend struct as_if;
typedef YAML::iterator iterator;
typedef YAML::const_iterator const_iterator;
Node();
explicit Node(NodeType::value type);
template<typename T> explicit Node(const T& rhs);
explicit Node(const detail::iterator_value& rhs);
Node(const Node& rhs);
~Node();
NodeType::value Type() const;
bool IsDefined() const;
bool IsNull() const { return Type() == NodeType::Null; }
bool IsScalar() const { return Type() == NodeType::Scalar; }
bool IsSequence() const { return Type() == NodeType::Sequence; }
bool IsMap() const { return Type() == NodeType::Map; }
// bool conversions
YAML_CPP_OPERATOR_BOOL();
bool operator!() const { return !IsDefined(); }
// access
template<typename T> const T as() const;
template<typename T, typename S> const T as(const S& fallback) const;
const std::string& Scalar() const;
const std::string& Tag() const;
void SetTag(const std::string& tag);
namespace YAML {
class YAML_CPP_API Node {
public:
friend class NodeBuilder;
friend class NodeEvents;
friend struct detail::iterator_value;
friend class detail::node;
friend class detail::node_data;
template <typename>
friend class detail::iterator_base;
template <typename T, typename S>
friend struct as_if;
// assignment
bool is(const Node& rhs) const;
template<typename T> Node& operator=(const T& rhs);
Node& operator=(const Node& rhs);
using iterator = YAML::iterator;
using const_iterator = YAML::const_iterator;
// size/iterator
std::size_t size() const;
Node();
explicit Node(NodeType::value type);
template <typename T>
explicit Node(const T& rhs);
explicit Node(const detail::iterator_value& rhs);
Node(const Node& rhs);
~Node();
const_iterator begin() const;
iterator begin();
const_iterator end() const;
iterator end();
// sequence
template<typename T> void push_back(const T& rhs);
void push_back(const Node& rhs);
// indexing
template<typename Key> const Node operator[](const Key& key) const;
template<typename Key> Node operator[](const Key& key);
template<typename Key> bool remove(const Key& key);
YAML::Mark Mark() const;
NodeType::value Type() const;
bool IsDefined() const;
bool IsNull() const { return Type() == NodeType::Null; }
bool IsScalar() const { return Type() == NodeType::Scalar; }
bool IsSequence() const { return Type() == NodeType::Sequence; }
bool IsMap() const { return Type() == NodeType::Map; }
const Node operator[](const Node& key) const;
Node operator[](const Node& key);
bool remove(const Node& key);
const Node operator[](const char *key) const;
Node operator[](const char *key);
bool remove(const char *key);
// bool conversions
explicit operator bool() const { return IsDefined(); }
bool operator!() const { return !IsDefined(); }
const Node operator[](char *key) const;
Node operator[](char *key);
bool remove(char *key);
private:
explicit Node(detail::node& node, detail::shared_memory_holder pMemory);
void EnsureNodeExists() const;
template<typename T> void Assign(const T& rhs);
void Assign(const char *rhs);
void Assign(char *rhs);
// access
template <typename T>
T as() const;
template <typename T, typename S>
T as(const S& fallback) const;
const std::string& Scalar() const;
void AssignData(const Node& rhs);
void AssignNode(const Node& rhs);
private:
mutable detail::shared_memory_holder m_pMemory;
mutable detail::node *m_pNode;
};
const std::string& Tag() const;
void SetTag(const std::string& tag);
// style
// WARNING: This API might change in future releases.
EmitterStyle::value Style() const;
void SetStyle(EmitterStyle::value style);
// assignment
bool is(const Node& rhs) const;
template <typename T>
Node& operator=(const T& rhs);
Node& operator=(const Node& rhs);
void reset(const Node& rhs = Node());
// size/iterator
std::size_t size() const;
const_iterator begin() const;
iterator begin();
const_iterator end() const;
iterator end();
// sequence
template <typename T>
void push_back(const T& rhs);
void push_back(const Node& rhs);
// indexing
template <typename Key>
const Node operator[](const Key& key) const;
template <typename Key>
Node operator[](const Key& key);
template <typename Key>
bool remove(const Key& key);
const Node operator[](const Node& key) const;
Node operator[](const Node& key);
bool remove(const Node& key);
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value);
private:
enum Zombie { ZombieNode };
explicit Node(Zombie);
explicit Node(Zombie, const std::string&);
explicit Node(detail::node& node, detail::shared_memory_holder pMemory);
void EnsureNodeExists() const;
template <typename T>
void Assign(const T& rhs);
void Assign(const char* rhs);
void Assign(char* rhs);
void AssignData(const Node& rhs);
void AssignNode(const Node& rhs);
private:
bool m_isValid;
// String representation of invalid key, if the node is invalid.
std::string m_invalidKey;
mutable detail::shared_memory_holder m_pMemory;
mutable detail::node* m_pNode;
};
YAML_CPP_API bool operator==(const Node& lhs, const Node& rhs);
YAML_CPP_API Node Clone(const Node& node);
template <typename T>
struct convert;
bool operator==(const Node& lhs, const Node& rhs);
template<typename T>
struct convert;
}
#endif // NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,9 +1,7 @@
#ifndef VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
@ -11,68 +9,20 @@
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML
{
class Node;
Node Load(const std::string& input);
Node Load(const char *input);
Node Load(std::istream& input);
Node LoadFile(const std::string& filename);
namespace YAML {
class Node;
std::vector<Node> LoadAll(const std::string& input);
std::vector<Node> LoadAll(const char *input);
std::vector<Node> LoadAll(std::istream& input);
std::vector<Node> LoadAllFromFile(const std::string& filename);
}
/**
* Loads the input string as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(const std::string& input);
#endif // VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
/**
* Loads the input string as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(const char* input);
/**
* Loads the input stream as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(std::istream& input);
/**
* Loads the input file as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
* @throws {@link BadFile} if the file cannot be loaded.
*/
YAML_CPP_API Node LoadFile(const std::string& filename);
/**
* Loads the input string as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(const std::string& input);
/**
* Loads the input string as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(const char* input);
/**
* Loads the input stream as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(std::istream& input);
/**
* Loads the input file as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
* @throws {@link BadFile} if the file cannot be loaded.
*/
YAML_CPP_API std::vector<Node> LoadAllFromFile(const std::string& filename);
} // namespace YAML
#endif // VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,28 +1,29 @@
#ifndef VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <memory>
namespace YAML {
namespace detail {
class node;
class node_ref;
class node_data;
class memory;
class memory_holder;
#include "yaml-cpp/dll.h"
#include <boost/shared_ptr.hpp>
using shared_node = std::shared_ptr<node>;
using shared_node_ref = std::shared_ptr<node_ref>;
using shared_node_data = std::shared_ptr<node_data>;
using shared_memory_holder = std::shared_ptr<memory_holder>;
using shared_memory = std::shared_ptr<memory>;
}
namespace YAML
{
namespace detail {
class node;
class node_ref;
class node_data;
class memory;
class memory_holder;
typedef boost::shared_ptr<node> shared_node;
typedef boost::shared_ptr<node_ref> shared_node_ref;
typedef boost::shared_ptr<node_data> shared_node_data;
typedef boost::shared_ptr<memory_holder> shared_memory_holder;
typedef boost::shared_ptr<memory> shared_memory;
}
}
#endif // VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,17 +1,14 @@
#ifndef VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
namespace NodeType {
enum value { Undefined, Null, Scalar, Sequence, Map };
namespace YAML
{
struct NodeType { enum value { Undefined, Null, Scalar, Sequence, Map }; };
}
}
#endif // VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,18 +0,0 @@
#ifndef NOEXCEPT_H_768872DA_476C_11EA_88B8_90B11C0C0FF8
#define NOEXCEPT_H_768872DA_476C_11EA_88B8_90B11C0C0FF8
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
// This is here for compatibility with older versions of Visual Studio
// which don't support noexcept.
#if defined(_MSC_VER) && _MSC_VER < 1900
#define YAML_CPP_NOEXCEPT _NOEXCEPT
#else
#define YAML_CPP_NOEXCEPT noexcept
#endif
#endif

View File

@ -0,0 +1,25 @@
#ifndef NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
namespace YAML
{
// this is basically boost::noncopyable
class YAML_CPP_API noncopyable
{
protected:
noncopyable() {}
~noncopyable() {}
private:
noncopyable(const noncopyable&);
const noncopyable& operator = (const noncopyable&);
};
}
#endif // NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,26 +1,25 @@
#ifndef NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include <cstddef>
namespace YAML {
class Node;
struct YAML_CPP_API _Null {};
inline bool operator==(const _Null&, const _Null&) { return true; }
inline bool operator!=(const _Null&, const _Null&) { return false; }
YAML_CPP_API bool IsNull(const Node& node); // old API only
YAML_CPP_API bool IsNullString(const char* str, std::size_t size);
extern YAML_CPP_API _Null Null;
namespace YAML
{
class Node;
struct YAML_CPP_API _Null {};
inline bool operator == (const _Null&, const _Null&) { return true; }
inline bool operator != (const _Null&, const _Null&) { return false; }
YAML_CPP_API bool IsNull(const Node& node); // old API only
extern YAML_CPP_API _Null Null;
}
#endif // NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -0,0 +1,40 @@
#ifndef OSTREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define OSTREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
namespace YAML
{
class ostream
{
public:
ostream();
~ostream();
void reserve(unsigned size);
void put(char ch);
const char *str() const { return m_buffer; }
unsigned row() const { return m_row; }
unsigned col() const { return m_col; }
unsigned pos() const { return m_pos; }
private:
char *m_buffer;
unsigned m_pos;
unsigned m_size;
unsigned m_row, m_col;
};
ostream& operator << (ostream& out, const char *str);
ostream& operator << (ostream& out, const std::string& str);
ostream& operator << (ostream& out, char ch);
}
#endif // OSTREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,76 +0,0 @@
#ifndef OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML {
class YAML_CPP_API ostream_wrapper {
public:
ostream_wrapper();
explicit ostream_wrapper(std::ostream& stream);
ostream_wrapper(const ostream_wrapper&) = delete;
ostream_wrapper(ostream_wrapper&&) = delete;
ostream_wrapper& operator=(const ostream_wrapper&) = delete;
ostream_wrapper& operator=(ostream_wrapper&&) = delete;
~ostream_wrapper();
void write(const std::string& str);
void write(const char* str, std::size_t size);
void set_comment() { m_comment = true; }
const char* str() const {
if (m_pStream) {
return nullptr;
} else {
m_buffer[m_pos] = '\0';
return &m_buffer[0];
}
}
std::size_t row() const { return m_row; }
std::size_t col() const { return m_col; }
std::size_t pos() const { return m_pos; }
bool comment() const { return m_comment; }
private:
void update_pos(char ch);
private:
mutable std::vector<char> m_buffer;
std::ostream* const m_pStream;
std::size_t m_pos;
std::size_t m_row, m_col;
bool m_comment;
};
template <std::size_t N>
inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const char (&str)[N]) {
stream.write(str, N - 1);
return stream;
}
inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const std::string& str) {
stream.write(str);
return stream;
}
inline ostream_wrapper& operator<<(ostream_wrapper& stream, char ch) {
stream.write(&ch, 1);
return stream;
}
} // namespace YAML
#endif // OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,90 +1,51 @@
#ifndef PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/noncopyable.h"
#include <ios>
#include <memory>
#include "yaml-cpp/dll.h"
namespace YAML
{
struct Directives;
struct Mark;
struct Token;
class EventHandler;
class Node;
class Scanner;
namespace YAML {
class EventHandler;
class Node;
class Scanner;
struct Directives;
struct Token;
class YAML_CPP_API Parser: private noncopyable
{
public:
Parser();
Parser(std::istream& in);
~Parser();
/**
* A parser turns a stream of bytes into one stream of "events" per YAML
* document in the input stream.
*/
class YAML_CPP_API Parser {
public:
/** Constructs an empty parser (with no input. */
Parser();
operator bool() const;
Parser(const Parser&) = delete;
Parser(Parser&&) = delete;
Parser& operator=(const Parser&) = delete;
Parser& operator=(Parser&&) = delete;
void Load(std::istream& in);
bool HandleNextDocument(EventHandler& eventHandler);
bool GetNextDocument(Node& document); // old API only
void PrintTokens(std::ostream& out);
/**
* Constructs a parser from the given input stream. The input stream must
* live as long as the parser.
*/
explicit Parser(std::istream& in);
private:
void ParseDirectives();
void HandleDirective(const Token& token);
void HandleYamlDirective(const Token& token);
void HandleTagDirective(const Token& token);
private:
std::auto_ptr<Scanner> m_pScanner;
std::auto_ptr<Directives> m_pDirectives;
};
}
~Parser();
/** Evaluates to true if the parser has some valid input to be read. */
explicit operator bool() const;
/**
* Resets the parser with the given input stream. Any existing state is
* erased.
*/
void Load(std::istream& in);
/**
* Handles the next document by calling events on the {@code eventHandler}.
*
* @throw a ParserException on error.
* @return false if there are no more documents
*/
bool HandleNextDocument(EventHandler& eventHandler);
void PrintTokens(std::ostream& out);
private:
/**
* Reads any directives that are next in the queue, setting the internal
* {@code m_pDirectives} state.
*/
void ParseDirectives();
void HandleDirective(const Token& token);
/**
* Handles a "YAML" directive, which should be of the form 'major.minor' (like
* a version number).
*/
void HandleYamlDirective(const Token& token);
/**
* Handles a "TAG" directive, which should be of the form 'handle prefix',
* where 'handle' is converted to 'prefix' in the file.
*/
void HandleTagDirective(const Token& token);
private:
std::unique_ptr<Scanner> m_pScanner;
std::unique_ptr<Directives> m_pDirectives;
};
} // namespace YAML
#endif // PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,50 +1,51 @@
#ifndef STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include <list>
#include <set>
#include <map>
namespace YAML {
template <typename Seq>
inline Emitter& EmitSeq(Emitter& emitter, const Seq& seq) {
emitter << BeginSeq;
for (const auto& v : seq)
emitter << v;
emitter << EndSeq;
return emitter;
namespace YAML
{
template<typename Seq>
inline Emitter& EmitSeq(Emitter& emitter, const Seq& seq) {
emitter << BeginSeq;
for(typename Seq::const_iterator it=seq.begin();it!=seq.end();++it)
emitter << *it;
emitter << EndSeq;
return emitter;
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::vector<T>& v) {
return EmitSeq(emitter, v);
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::list<T>& v) {
return EmitSeq(emitter, v);
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::set<T>& v) {
return EmitSeq(emitter, v);
}
template <typename K, typename V>
inline Emitter& operator << (Emitter& emitter, const std::map<K, V>& m) {
typedef typename std::map <K, V> map;
emitter << BeginMap;
for(typename map::const_iterator it=m.begin();it!=m.end();++it)
emitter << Key << it->first << Value << it->second;
emitter << EndMap;
return emitter;
}
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::vector<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::list<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::set<T>& v) {
return EmitSeq(emitter, v);
}
template <typename K, typename V>
inline Emitter& operator<<(Emitter& emitter, const std::map<K, V>& m) {
emitter << BeginMap;
for (const auto& v : m)
emitter << Key << v.first << Value << v.second;
emitter << EndMap;
return emitter;
}
}
#endif // STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,136 +1,57 @@
#ifndef TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <type_traits>
#include <utility>
#include <string>
#include <sstream>
namespace YAML {
template <typename>
struct is_numeric {
enum { value = false };
};
namespace YAML
{
template <typename>
struct is_numeric { enum { value = false }; };
template <>
struct is_numeric<char> {
enum { value = true };
};
template <>
struct is_numeric<unsigned char> {
enum { value = true };
};
template <>
struct is_numeric<int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned int> {
enum { value = true };
};
template <>
struct is_numeric<long int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long int> {
enum { value = true };
};
template <>
struct is_numeric<short int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned short int> {
enum { value = true };
};
template <> struct is_numeric <char> { enum { value = true }; };
template <> struct is_numeric <unsigned char> { enum { value = true }; };
template <> struct is_numeric <int> { enum { value = true }; };
template <> struct is_numeric <unsigned int> { enum { value = true }; };
template <> struct is_numeric <long int> { enum { value = true }; };
template <> struct is_numeric <unsigned long int> { enum { value = true }; };
template <> struct is_numeric <short int> { enum { value = true }; };
template <> struct is_numeric <unsigned short int> { enum { value = true }; };
#if defined(_MSC_VER) && (_MSC_VER < 1310)
template <>
struct is_numeric<__int64> {
enum { value = true };
};
template <>
struct is_numeric<unsigned __int64> {
enum { value = true };
};
template <> struct is_numeric <__int64> { enum { value = true }; };
template <> struct is_numeric <unsigned __int64> { enum { value = true }; };
#else
template <>
struct is_numeric<long long> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long long> {
enum { value = true };
};
template <> struct is_numeric <long long> { enum { value = true }; };
template <> struct is_numeric <unsigned long long> { enum { value = true }; };
#endif
template <>
struct is_numeric<float> {
enum { value = true };
};
template <>
struct is_numeric<double> {
enum { value = true };
};
template <>
struct is_numeric<long double> {
enum { value = true };
};
template <> struct is_numeric <float> { enum { value = true }; };
template <> struct is_numeric <double> { enum { value = true }; };
template <> struct is_numeric <long double> { enum { value = true }; };
template <bool, class T = void>
struct enable_if_c {
using type = T;
};
template <bool, class T = void>
struct enable_if_c {
typedef T type;
};
template <class T>
struct enable_if_c<false, T> {};
template <class T>
struct enable_if_c<false, T> {};
template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {};
template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {};
template <bool, class T = void>
struct disable_if_c {
using type = T;
};
template <bool, class T = void>
struct disable_if_c {
typedef T type;
};
template <class T>
struct disable_if_c<true, T> {};
template <class T>
struct disable_if_c<true, T> {};
template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {};
template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {};
}
template <typename S, typename T>
struct is_streamable {
template <typename StreamT, typename ValueT>
static auto test(int)
-> decltype(std::declval<StreamT&>() << std::declval<ValueT>(), std::true_type());
#endif // TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
template <typename, typename>
static auto test(...) -> std::false_type;
static const bool value = decltype(test<S, T>(0))::value;
};
template<typename Key, bool Streamable>
struct streamable_to_string {
static std::string impl(const Key& key) {
std::stringstream ss;
ss.imbue(std::locale("C"));
ss << key;
return ss.str();
}
};
template<typename Key>
struct streamable_to_string<Key, false> {
static std::string impl(const Key&) {
return "";
}
};
#endif // TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,15 +1,12 @@
#ifndef YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/parser.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/stlemitter.h"
#include "yaml-cpp/exceptions.h"
@ -21,4 +18,4 @@
#include "yaml-cpp/node/parse.h"
#include "yaml-cpp/node/emit.h"
#endif // YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,4 +1,4 @@
Copyright (c) 2008-2015 Jesse Beder.
Copyright (c) 2008 Jesse Beder.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -1,100 +1,93 @@
#include "yaml-cpp/binary.h"
#include <cctype>
namespace YAML
{
static const char encoding[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
namespace YAML {
static const char encoding[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
std::string EncodeBase64(const unsigned char *data, std::size_t size) {
const char PAD = '=';
std::string ret;
ret.resize(4 * size / 3 + 3);
char *out = &ret[0];
std::size_t chunks = size / 3;
std::size_t remainder = size % 3;
for (std::size_t i = 0; i < chunks; i++, data += 3) {
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2) | (data[2] >> 6)];
*out++ = encoding[data[2] & 0x3f];
}
switch (remainder) {
case 0:
break;
case 1:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4)];
*out++ = PAD;
*out++ = PAD;
break;
case 2:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2)];
*out++ = PAD;
break;
}
ret.resize(out - &ret[0]);
return ret;
}
static const unsigned char decoding[] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255,
255, 255, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255,
255, 0, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 255, 255, 255, 255, 255, 255, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,
};
std::vector<unsigned char> DecodeBase64(const std::string &input) {
using ret_type = std::vector<unsigned char>;
if (input.empty())
return ret_type();
ret_type ret(3 * input.size() / 4 + 1);
unsigned char *out = &ret[0];
unsigned value = 0;
for (std::size_t i = 0, cnt = 0; i < input.size(); i++) {
if (std::isspace(static_cast<unsigned char>(input[i]))) {
// skip newlines
continue;
std::string EncodeBase64(const unsigned char *data, std::size_t size)
{
const char PAD = '=';
std::string ret;
ret.resize(4 * size / 3 + 3);
char *out = &ret[0];
std::size_t chunks = size / 3;
std::size_t remainder = size % 3;
for(std::size_t i=0;i<chunks;i++, data += 3) {
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2) | (data[2] >> 6)];
*out++ = encoding[data[2] & 0x3f];
}
switch(remainder) {
case 0:
break;
case 1:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4)];
*out++ = PAD;
*out++ = PAD;
break;
case 2:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2)];
*out++ = PAD;
break;
}
ret.resize(out - &ret[0]);
return ret;
}
unsigned char d = decoding[static_cast<unsigned char>(input[i])];
if (d == 255)
return ret_type();
static const unsigned char decoding[] = {
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255, 62,255,255,255, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61,255,255,255, 0,255,255,
255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,255,255,255,255,255,
255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
};
value = (value << 6) | d;
if (cnt % 4 == 3) {
*out++ = value >> 16;
if (i > 0 && input[i - 1] != '=')
*out++ = value >> 8;
if (input[i] != '=')
*out++ = value;
std::vector<unsigned char> DecodeBase64(const std::string& input)
{
typedef std::vector<unsigned char> ret_type;
if(input.empty())
return ret_type();
ret_type ret(3 * input.size() / 4 + 1);
unsigned char *out = &ret[0];
unsigned value = 0;
for(std::size_t i=0;i<input.size();i++) {
unsigned char d = decoding[static_cast<unsigned>(input[i])];
if(d == 255)
return ret_type();
value = (value << 6) | d;
if(i % 4 == 3) {
*out++ = value >> 16;
if(i > 0 && input[i - 1] != '=')
*out++ = value >> 8;
if(input[i] != '=')
*out++ = value;
}
}
ret.resize(out - &ret[0]);
return ret;
}
++cnt;
}
ret.resize(out - &ret[0]);
return ret;
}
} // namespace YAML

View File

@ -1,41 +1,35 @@
#ifndef COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cassert>
#include <stack>
#include <cassert>
namespace YAML {
struct CollectionType {
enum value { NoCollection, BlockMap, BlockSeq, FlowMap, FlowSeq, CompactMap };
};
namespace YAML
{
struct CollectionType {
enum value { None, BlockMap, BlockSeq, FlowMap, FlowSeq, CompactMap };
};
class CollectionStack {
public:
CollectionStack() : collectionStack{} {}
CollectionType::value GetCurCollectionType() const {
if (collectionStack.empty())
return CollectionType::NoCollection;
return collectionStack.top();
}
class CollectionStack
{
public:
CollectionType::value GetCurCollectionType() const {
if(collectionStack.empty())
return CollectionType::None;
return collectionStack.top();
}
void PushCollectionType(CollectionType::value type) { collectionStack.push(type); }
void PopCollectionType(CollectionType::value type) { assert(type == GetCurCollectionType()); collectionStack.pop(); }
private:
std::stack<CollectionType::value> collectionStack;
};
}
void PushCollectionType(CollectionType::value type) {
collectionStack.push(type);
}
void PopCollectionType(CollectionType::value type) {
assert(type == GetCurCollectionType());
(void)type;
collectionStack.pop();
}
private:
std::stack<CollectionType::value> collectionStack;
};
} // namespace YAML
#endif // COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

File diff suppressed because it is too large Load Diff

View File

@ -1,16 +1,16 @@
#include "yaml-cpp/parser.h"
#include "yaml-cpp/contrib/graphbuilder.h"
#include "graphbuilderadapter.h"
#include "yaml-cpp/parser.h" // IWYU pragma: keep
namespace YAML {
class GraphBuilderInterface;
void* BuildGraphOfNextDocument(Parser& parser,
GraphBuilderInterface& graphBuilder) {
GraphBuilderAdapter eventHandler(graphBuilder);
if (parser.HandleNextDocument(eventHandler)) {
return eventHandler.RootNode();
namespace YAML
{
void *BuildGraphOfNextDocument(Parser& parser, GraphBuilderInterface& graphBuilder)
{
GraphBuilderAdapter eventHandler(graphBuilder);
if (parser.HandleNextDocument(eventHandler)) {
return eventHandler.RootNode();
} else {
return NULL;
}
}
return nullptr;
}
} // namespace YAML

View File

@ -1,94 +1,96 @@
#include "graphbuilderadapter.h"
#include "yaml-cpp/contrib/graphbuilder.h"
namespace YAML {
struct Mark;
int GraphBuilderAdapter::ContainerFrame::sequenceMarker;
void GraphBuilderAdapter::OnNull(const Mark &mark, anchor_t anchor) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewNull(mark, pParent);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnAlias(const Mark &mark, anchor_t anchor) {
void *pReffedNode = m_anchors.Get(anchor);
DispositionNode(m_builder.AnchorReference(mark, pReffedNode));
}
void GraphBuilderAdapter::OnScalar(const Mark &mark, const std::string &tag,
anchor_t anchor, const std::string &value) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewScalar(mark, tag, pParent, value);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnSequenceStart(const Mark &mark,
const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewSequence(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode));
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnSequenceEnd() {
void *pSequence = m_containers.top().pContainer;
m_containers.pop();
DispositionNode(pSequence);
}
void GraphBuilderAdapter::OnMapStart(const Mark &mark, const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewMap(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode, m_pKeyNode));
m_pKeyNode = nullptr;
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnMapEnd() {
void *pMap = m_containers.top().pContainer;
m_pKeyNode = m_containers.top().pPrevKeyNode;
m_containers.pop();
DispositionNode(pMap);
}
void *GraphBuilderAdapter::GetCurrentParent() const {
if (m_containers.empty()) {
return nullptr;
namespace YAML
{
int GraphBuilderAdapter::ContainerFrame::sequenceMarker;
void GraphBuilderAdapter::OnNull(const Mark& mark, anchor_t anchor)
{
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewNull(mark, pParent);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
return m_containers.top().pContainer;
}
void GraphBuilderAdapter::RegisterAnchor(anchor_t anchor, void *pNode) {
if (anchor) {
m_anchors.Register(anchor, pNode);
void GraphBuilderAdapter::OnAlias(const Mark& mark, anchor_t anchor)
{
void *pReffedNode = m_anchors.Get(anchor);
DispositionNode(m_builder.AnchorReference(mark, pReffedNode));
}
}
void GraphBuilderAdapter::DispositionNode(void *pNode) {
if (m_containers.empty()) {
m_pRootNode = pNode;
return;
void GraphBuilderAdapter::OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value)
{
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewScalar(mark, tag, pParent, value);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void *pContainer = m_containers.top().pContainer;
if (m_containers.top().isMap()) {
if (m_pKeyNode) {
m_builder.AssignInMap(pContainer, m_pKeyNode, pNode);
m_pKeyNode = nullptr;
} else {
m_pKeyNode = pNode;
void GraphBuilderAdapter::OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor)
{
void *pNode = m_builder.NewSequence(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode));
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnSequenceEnd()
{
void *pSequence = m_containers.top().pContainer;
m_containers.pop();
DispositionNode(pSequence);
}
void GraphBuilderAdapter::OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor)
{
void *pNode = m_builder.NewMap(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode, m_pKeyNode));
m_pKeyNode = NULL;
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnMapEnd()
{
void *pMap = m_containers.top().pContainer;
m_pKeyNode = m_containers.top().pPrevKeyNode;
m_containers.pop();
DispositionNode(pMap);
}
void *GraphBuilderAdapter::GetCurrentParent() const
{
if (m_containers.empty()) {
return NULL;
}
return m_containers.top().pContainer;
}
void GraphBuilderAdapter::RegisterAnchor(anchor_t anchor, void *pNode)
{
if (anchor) {
m_anchors.Register(anchor, pNode);
}
}
void GraphBuilderAdapter::DispositionNode(void *pNode)
{
if (m_containers.empty()) {
m_pRootNode = pNode;
return;
}
void *pContainer = m_containers.top().pContainer;
if (m_containers.top().isMap()) {
if (m_pKeyNode) {
m_builder.AssignInMap(pContainer, m_pKeyNode, pNode);
m_pKeyNode = NULL;
} else {
m_pKeyNode = pNode;
}
} else {
m_builder.AppendToSequence(pContainer, pNode);
}
} else {
m_builder.AppendToSequence(pContainer, pNode);
}
}
} // namespace YAML

View File

@ -1,86 +1,73 @@
#ifndef GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstdlib>
#include <map>
#include <stack>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/contrib/anchordict.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/contrib/anchordict.h"
#include "yaml-cpp/contrib/graphbuilder.h"
namespace YAML {
class GraphBuilderInterface;
struct Mark;
} // namespace YAML
namespace YAML {
class GraphBuilderAdapter : public EventHandler {
public:
GraphBuilderAdapter(GraphBuilderInterface& builder)
: m_builder(builder),
m_containers{},
m_anchors{},
m_pRootNode(nullptr),
m_pKeyNode(nullptr) {}
GraphBuilderAdapter(const GraphBuilderAdapter&) = delete;
GraphBuilderAdapter(GraphBuilderAdapter&&) = delete;
GraphBuilderAdapter& operator=(const GraphBuilderAdapter&) = delete;
GraphBuilderAdapter& operator=(GraphBuilderAdapter&&) = delete;
virtual void OnDocumentStart(const Mark& mark) { (void)mark; }
virtual void OnDocumentEnd() {}
virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style);
virtual void OnSequenceEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style);
virtual void OnMapEnd();
void* RootNode() const { return m_pRootNode; }
private:
struct ContainerFrame {
ContainerFrame(void* pSequence)
: pContainer(pSequence), pPrevKeyNode(&sequenceMarker) {}
ContainerFrame(void* pMap, void* pPreviousKeyNode)
: pContainer(pMap), pPrevKeyNode(pPreviousKeyNode) {}
void* pContainer;
void* pPrevKeyNode;
bool isMap() const { return pPrevKeyNode != &sequenceMarker; }
private:
static int sequenceMarker;
namespace YAML
{
class GraphBuilderAdapter : public EventHandler
{
public:
GraphBuilderAdapter(GraphBuilderInterface& builder)
: m_builder(builder), m_pRootNode(NULL), m_pKeyNode(NULL)
{
}
virtual void OnDocumentStart(const Mark& mark) {(void)mark;}
virtual void OnDocumentEnd() {}
virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnSequenceEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnMapEnd();
void *RootNode() const {return m_pRootNode;}
private:
struct ContainerFrame
{
ContainerFrame(void *pSequence)
: pContainer(pSequence), pPrevKeyNode(&sequenceMarker)
{}
ContainerFrame(void *pMap, void* pPrevKeyNode)
: pContainer(pMap), pPrevKeyNode(pPrevKeyNode)
{}
void *pContainer;
void *pPrevKeyNode;
bool isMap() const {return pPrevKeyNode != &sequenceMarker;}
private:
static int sequenceMarker;
};
typedef std::stack<ContainerFrame> ContainerStack;
typedef AnchorDict<void*> AnchorMap;
GraphBuilderInterface& m_builder;
ContainerStack m_containers;
AnchorMap m_anchors;
void *m_pRootNode;
void *m_pKeyNode;
void *GetCurrentParent() const;
void RegisterAnchor(anchor_t anchor, void *pNode);
void DispositionNode(void *pNode);
};
typedef std::stack<ContainerFrame> ContainerStack;
typedef AnchorDict<void*> AnchorMap;
}
GraphBuilderInterface& m_builder;
ContainerStack m_containers;
AnchorMap m_anchors;
void* m_pRootNode;
void* m_pKeyNode;
void* GetCurrentParent() const;
void RegisterAnchor(anchor_t anchor, void* pNode);
void DispositionNode(void* pNode);
};
} // namespace YAML
#endif // GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,32 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- MSVC Debugger visualization hints for YAML::Node and YAML::detail::node -->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="YAML::Node">
<DisplayString Condition="!m_isValid">{{invalid}}</DisplayString>
<DisplayString Condition="!m_pNode">{{pNode==nullptr}}</DisplayString>
<DisplayString>{{ {*m_pNode} }}</DisplayString>
<Expand>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar" Name="scalar">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_scalar</Item>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence" Name="sequence">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_sequence</Item>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map" Name="map">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_map</Item>
<Item Name="[details]" >m_pNode->m_pRef._Ptr->m_pData._Ptr</Item>
</Expand>
</Type>
<Type Name="YAML::detail::node">
<DisplayString Condition="!m_pRef._Ptr">{{node:pRef==nullptr}}</DisplayString>
<DisplayString Condition="!m_pRef._Ptr->m_pData._Ptr">{{node:pRef->pData==nullptr}}</DisplayString>
<DisplayString Condition="!m_pRef._Ptr->m_pData._Ptr->m_isDefined">{{undefined}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar">{{{m_pRef._Ptr->m_pData._Ptr->m_scalar}}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map">{{ Map {m_pRef._Ptr->m_pData._Ptr->m_map}}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence">{{ Seq {m_pRef._Ptr->m_pData._Ptr->m_sequence}}}</DisplayString>
<DisplayString>{{{m_pRef._Ptr->m_pData._Ptr->m_type}}}</DisplayString>
<Expand>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar" Name="scalar">m_pRef._Ptr->m_pData._Ptr->m_scalar</Item>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence" Name="sequence">m_pRef._Ptr->m_pData._Ptr->m_sequence</Item>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map" Name="map">m_pRef._Ptr->m_pData._Ptr->m_map</Item>
<Item Name="[details]" >m_pRef._Ptr->m_pData._Ptr</Item>
</Expand>
</Type>
</AutoVisualizer>

View File

@ -1,9 +0,0 @@
# MSVC debugger visualizer for YAML::Node
## How to use
Add yaml-cpp.natvis to your Visual C++ project like any other source file. It will be included in the debug information, and improve debugger display on YAML::Node and contained types.
## Compatibility and Troubleshooting
This has been tested for MSVC 2017. It is expected to be compatible with VS 2015 and VS 2019. If you have any problems, you can open an issue here: https://github.com/peterchen-cp/yaml-cpp-natvis

View File

@ -1,74 +1,83 @@
#include "yaml-cpp/node/convert.h"
#include "yaml-cpp/node/impl.h"
#include <algorithm>
#include "yaml-cpp/node/convert.h"
namespace {
// we're not gonna mess with the mess that is all the isupper/etc. functions
bool IsLower(char ch) { return 'a' <= ch && ch <= 'z'; }
bool IsUpper(char ch) { return 'A' <= ch && ch <= 'Z'; }
char ToLower(char ch) { return IsUpper(ch) ? ch + 'a' - 'A' : ch; }
std::string tolower(const std::string& str) {
std::string s(str);
std::transform(s.begin(), s.end(), s.begin(), ToLower);
return s;
namespace
{
// we're not gonna mess with the mess that is all the isupper/etc. functions
bool IsLower(char ch) { return 'a' <= ch && ch <= 'z'; }
bool IsUpper(char ch) { return 'A' <= ch && ch <= 'Z'; }
char ToLower(char ch) { return IsUpper(ch) ? ch + 'a' - 'A' : ch; }
std::string tolower(const std::string& str)
{
std::string s(str);
std::transform(s.begin(), s.end(), s.begin(), ToLower);
return s;
}
template <typename T>
bool IsEntirely(const std::string& str, T func)
{
for(std::size_t i=0;i<str.size();i++)
if(!func(str[i]))
return false;
return true;
}
// IsFlexibleCase
// . Returns true if 'str' is:
// . UPPERCASE
// . lowercase
// . Capitalized
bool IsFlexibleCase(const std::string& str)
{
if(str.empty())
return true;
if(IsEntirely(str, IsLower))
return true;
bool firstcaps = IsUpper(str[0]);
std::string rest = str.substr(1);
return firstcaps && (IsEntirely(rest, IsLower) || IsEntirely(rest, IsUpper));
}
}
template <typename T>
bool IsEntirely(const std::string& str, T func) {
return std::all_of(str.begin(), str.end(), [=](char ch) { return func(ch); });
namespace YAML
{
bool convert<bool>::decode(const Node& node, bool& rhs) {
if(!node.IsScalar())
return false;
// we can't use iostream bool extraction operators as they don't
// recognize all possible values in the table below (taken from
// http://yaml.org/type/bool.html)
static const struct {
std::string truename, falsename;
} names[] = {
{ "y", "n" },
{ "yes", "no" },
{ "true", "false" },
{ "on", "off" },
};
if(!IsFlexibleCase(node.Scalar()))
return false;
for(unsigned i=0;i<sizeof(names)/sizeof(names[0]);i++) {
if(names[i].truename == tolower(node.Scalar())) {
rhs = true;
return true;
}
if(names[i].falsename == tolower(node.Scalar())) {
rhs = false;
return true;
}
}
return false;
}
}
// IsFlexibleCase
// . Returns true if 'str' is:
// . UPPERCASE
// . lowercase
// . Capitalized
bool IsFlexibleCase(const std::string& str) {
if (str.empty())
return true;
if (IsEntirely(str, IsLower))
return true;
bool firstcaps = IsUpper(str[0]);
std::string rest = str.substr(1);
return firstcaps && (IsEntirely(rest, IsLower) || IsEntirely(rest, IsUpper));
}
} // namespace
namespace YAML {
bool convert<bool>::decode(const Node& node, bool& rhs) {
if (!node.IsScalar())
return false;
// we can't use iostream bool extraction operators as they don't
// recognize all possible values in the table below (taken from
// http://yaml.org/type/bool.html)
static const struct {
std::string truename, falsename;
} names[] = {
{"y", "n"},
{"yes", "no"},
{"true", "false"},
{"on", "off"},
};
if (!IsFlexibleCase(node.Scalar()))
return false;
for (const auto& name : names) {
if (name.truename == tolower(node.Scalar())) {
rhs = true;
return true;
}
if (name.falsename == tolower(node.Scalar())) {
rhs = false;
return true;
}
}
return false;
}
} // namespace YAML

View File

@ -1,9 +0,0 @@
#include "yaml-cpp/depthguard.h"
namespace YAML {
DeepRecursion::DeepRecursion(int depth, const Mark& mark_,
const std::string& msg_)
: ParserException(mark_, msg_), m_depth(depth) {}
} // namespace YAML

View File

@ -1,17 +1,24 @@
#include "directives.h"
namespace YAML {
Directives::Directives() : version{true, 1, 2}, tags{} {}
std::string Directives::TranslateTagHandle(
const std::string& handle) const {
auto it = tags.find(handle);
if (it == tags.end()) {
if (handle == "!!")
return "tag:yaml.org,2002:";
return handle;
}
return it->second;
namespace YAML
{
Directives::Directives()
{
// version
version.isDefault = true;
version.major = 1;
version.minor = 2;
}
const std::string Directives::TranslateTagHandle(const std::string& handle) const
{
std::map <std::string, std::string>::const_iterator it = tags.find(handle);
if(it == tags.end()) {
if(handle == "!!")
return "tag:yaml.org,2002:";
return handle;
}
return it->second;
}
}
} // namespace YAML

View File

@ -1,29 +1,29 @@
#ifndef DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <map>
namespace YAML {
struct Version {
bool isDefault;
int major, minor;
};
namespace YAML
{
struct Version {
bool isDefault;
int major, minor;
};
struct Directives {
Directives();
const std::string TranslateTagHandle(const std::string& handle) const;
struct Directives {
Directives();
std::string TranslateTagHandle(const std::string& handle) const;
Version version;
std::map<std::string, std::string> tags;
};
Version version;
std::map<std::string, std::string> tags;
};
}
#endif // DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,25 +1,30 @@
#include "yaml-cpp/node/emit.h"
#include "nodeevents.h"
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "nodeevents.h"
namespace YAML {
Emitter& operator<<(Emitter& out, const Node& node) {
EmitFromEvents emitFromEvents(out);
NodeEvents events(node);
events.Emit(emitFromEvents);
return out;
}
namespace YAML
{
Emitter& operator << (Emitter& out, const Node& node)
{
EmitFromEvents emitFromEvents(out);
NodeEvents events(node);
events.Emit(emitFromEvents);
return out;
}
std::ostream& operator << (std::ostream& out, const Node& node)
{
Emitter emitter;
emitter << node;
out << emitter.c_str();
return out;
}
std::ostream& operator<<(std::ostream& out, const Node& node) {
Emitter emitter(out);
emitter << node;
return out;
std::string Dump(const Node& node)
{
Emitter emitter;
emitter << node;
return emitter.c_str();
}
}
std::string Dump(const Node& node) {
Emitter emitter;
emitter << node;
return emitter.c_str();
}
} // namespace YAML

View File

@ -1,129 +1,105 @@
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/null.h"
#include <cassert>
#include <sstream>
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/null.h"
namespace YAML {
struct Mark;
} // namespace YAML
namespace {
std::string ToString(YAML::anchor_t anchor) {
std::stringstream stream;
stream << anchor;
return stream.str();
}
} // namespace
namespace YAML {
EmitFromEvents::EmitFromEvents(Emitter& emitter)
: m_emitter(emitter), m_stateStack{} {}
void EmitFromEvents::OnDocumentStart(const Mark&) {}
void EmitFromEvents::OnDocumentEnd() {}
void EmitFromEvents::OnNull(const Mark&, anchor_t anchor) {
BeginNode();
EmitProps("", anchor);
m_emitter << Null;
std::string ToString(YAML::anchor_t anchor) {
std::stringstream stream;
stream << anchor;
return stream.str();
}
}
void EmitFromEvents::OnAlias(const Mark&, anchor_t anchor) {
BeginNode();
m_emitter << Alias(ToString(anchor));
}
namespace YAML
{
EmitFromEvents::EmitFromEvents(Emitter& emitter): m_emitter(emitter)
{
}
void EmitFromEvents::OnDocumentStart(const Mark&)
{
}
void EmitFromEvents::OnDocumentEnd()
{
}
void EmitFromEvents::OnNull(const Mark&, anchor_t anchor)
{
BeginNode();
EmitProps("", anchor);
m_emitter << Null;
}
void EmitFromEvents::OnAlias(const Mark&, anchor_t anchor)
{
BeginNode();
m_emitter << Alias(ToString(anchor));
}
void EmitFromEvents::OnScalar(const Mark&, const std::string& tag, anchor_t anchor, const std::string& value)
{
BeginNode();
EmitProps(tag, anchor);
m_emitter << value;
}
void EmitFromEvents::OnSequenceStart(const Mark&, const std::string& tag, anchor_t anchor)
{
BeginNode();
EmitProps(tag, anchor);
m_emitter << BeginSeq;
m_stateStack.push(State::WaitingForSequenceEntry);
}
void EmitFromEvents::OnSequenceEnd()
{
m_emitter << EndSeq;
assert(m_stateStack.top() == State::WaitingForSequenceEntry);
m_stateStack.pop();
}
void EmitFromEvents::OnMapStart(const Mark&, const std::string& tag, anchor_t anchor)
{
BeginNode();
EmitProps(tag, anchor);
m_emitter << BeginMap;
m_stateStack.push(State::WaitingForKey);
}
void EmitFromEvents::OnScalar(const Mark&, const std::string& tag,
anchor_t anchor, const std::string& value) {
BeginNode();
EmitProps(tag, anchor);
m_emitter << value;
}
void EmitFromEvents::OnMapEnd()
{
m_emitter << EndMap;
assert(m_stateStack.top() == State::WaitingForKey);
m_stateStack.pop();
}
void EmitFromEvents::OnSequenceStart(const Mark&, const std::string& tag,
anchor_t anchor,
EmitterStyle::value style) {
BeginNode();
EmitProps(tag, anchor);
switch (style) {
case EmitterStyle::Block:
m_emitter << Block;
break;
case EmitterStyle::Flow:
m_emitter << Flow;
break;
default:
break;
}
// Restore the global settings to eliminate the override from node style
m_emitter.RestoreGlobalModifiedSettings();
m_emitter << BeginSeq;
m_stateStack.push(State::WaitingForSequenceEntry);
void EmitFromEvents::BeginNode()
{
if(m_stateStack.empty())
return;
switch(m_stateStack.top()) {
case State::WaitingForKey:
m_emitter << Key;
m_stateStack.top() = State::WaitingForValue;
break;
case State::WaitingForValue:
m_emitter << Value;
m_stateStack.top() = State::WaitingForKey;
break;
default:
break;
}
}
void EmitFromEvents::EmitProps(const std::string& tag, anchor_t anchor)
{
if(!tag.empty() && tag != "?")
m_emitter << VerbatimTag(tag);
if(anchor)
m_emitter << Anchor(ToString(anchor));
}
}
void EmitFromEvents::OnSequenceEnd() {
m_emitter << EndSeq;
assert(m_stateStack.top() == State::WaitingForSequenceEntry);
m_stateStack.pop();
}
void EmitFromEvents::OnMapStart(const Mark&, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
BeginNode();
EmitProps(tag, anchor);
switch (style) {
case EmitterStyle::Block:
m_emitter << Block;
break;
case EmitterStyle::Flow:
m_emitter << Flow;
break;
default:
break;
}
// Restore the global settings to eliminate the override from node style
m_emitter.RestoreGlobalModifiedSettings();
m_emitter << BeginMap;
m_stateStack.push(State::WaitingForKey);
}
void EmitFromEvents::OnMapEnd() {
m_emitter << EndMap;
assert(m_stateStack.top() == State::WaitingForKey);
m_stateStack.pop();
}
void EmitFromEvents::BeginNode() {
if (m_stateStack.empty())
return;
switch (m_stateStack.top()) {
case State::WaitingForKey:
m_emitter << Key;
m_stateStack.top() = State::WaitingForValue;
break;
case State::WaitingForValue:
m_emitter << Value;
m_stateStack.top() = State::WaitingForKey;
break;
default:
break;
}
}
void EmitFromEvents::EmitProps(const std::string& tag, anchor_t anchor) {
if (!tag.empty() && tag != "?" && tag != "!"){
if (tag[0] == '!') {
m_emitter << LocalTag(std::string(tag.begin()+1, tag.end()));
} else {
m_emitter << VerbatimTag(tag);
}
}
if (anchor)
m_emitter << Anchor(ToString(anchor));
}
} // namespace YAML

File diff suppressed because it is too large Load Diff

View File

@ -1,400 +1,284 @@
#include "emitterstate.h"
#include "yaml-cpp/exceptions.h"
#include <limits>
#include "emitterstate.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML
{
EmitterState::EmitterState(): m_isGood(true), m_curIndent(0), m_requiresSoftSeparation(false), m_requiresHardSeparation(false)
{
// start up
m_stateStack.push(ES_WAITING_FOR_DOC);
// set default global manipulators
m_charset.set(EmitNonAscii);
m_strFmt.set(Auto);
m_boolFmt.set(TrueFalseBool);
m_boolLengthFmt.set(LongBool);
m_boolCaseFmt.set(LowerCase);
m_intFmt.set(Dec);
m_indent.set(2);
m_preCommentIndent.set(2);
m_postCommentIndent.set(1);
m_seqFmt.set(Block);
m_mapFmt.set(Block);
m_mapKeyFmt.set(Auto);
m_floatPrecision.set(6);
m_doublePrecision.set(15);
}
EmitterState::~EmitterState()
{
}
namespace YAML {
EmitterState::EmitterState()
: m_isGood(true),
m_lastError{},
// default global manipulators
m_charset(EmitNonAscii),
m_strFmt(Auto),
m_boolFmt(TrueFalseBool),
m_boolLengthFmt(LongBool),
m_boolCaseFmt(LowerCase),
m_nullFmt(TildeNull),
m_intFmt(Dec),
m_indent(2),
m_preCommentIndent(2),
m_postCommentIndent(1),
m_seqFmt(Block),
m_mapFmt(Block),
m_mapKeyFmt(Auto),
m_floatPrecision(std::numeric_limits<float>::max_digits10),
m_doublePrecision(std::numeric_limits<double>::max_digits10),
//
m_modifiedSettings{},
m_globalModifiedSettings{},
m_groups{},
m_curIndent(0),
m_hasAnchor(false),
m_hasAlias(false),
m_hasTag(false),
m_hasNonContent(false),
m_docCount(0) {}
// SetLocalValue
// . We blindly tries to set all possible formatters to this value
// . Only the ones that make sense will be accepted
void EmitterState::SetLocalValue(EMITTER_MANIP value)
{
SetOutputCharset(value, LOCAL);
SetStringFormat(value, LOCAL);
SetBoolFormat(value, LOCAL);
SetBoolCaseFormat(value, LOCAL);
SetBoolLengthFormat(value, LOCAL);
SetIntFormat(value, LOCAL);
SetFlowType(GT_SEQ, value, LOCAL);
SetFlowType(GT_MAP, value, LOCAL);
SetMapKeyFormat(value, LOCAL);
}
void EmitterState::BeginGroup(GROUP_TYPE type)
{
unsigned lastIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
m_curIndent += lastIndent;
std::auto_ptr<Group> pGroup(new Group(type));
// transfer settings (which last until this group is done)
pGroup->modifiedSettings = m_modifiedSettings;
EmitterState::~EmitterState() = default;
// set up group
pGroup->flow = GetFlowType(type);
pGroup->indent = GetIndent();
pGroup->usingLongKey = (GetMapKeyFormat() == LongKey ? true : false);
// SetLocalValue
// . We blindly tries to set all possible formatters to this value
// . Only the ones that make sense will be accepted
void EmitterState::SetLocalValue(EMITTER_MANIP value) {
SetOutputCharset(value, FmtScope::Local);
SetStringFormat(value, FmtScope::Local);
SetBoolFormat(value, FmtScope::Local);
SetBoolCaseFormat(value, FmtScope::Local);
SetBoolLengthFormat(value, FmtScope::Local);
SetNullFormat(value, FmtScope::Local);
SetIntFormat(value, FmtScope::Local);
SetFlowType(GroupType::Seq, value, FmtScope::Local);
SetFlowType(GroupType::Map, value, FmtScope::Local);
SetMapKeyFormat(value, FmtScope::Local);
}
m_groups.push(pGroup);
}
void EmitterState::EndGroup(GROUP_TYPE type)
{
if(m_groups.empty())
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
// get rid of the current group
{
std::auto_ptr<Group> pFinishedGroup = m_groups.pop();
if(pFinishedGroup->type != type)
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
}
void EmitterState::SetAnchor() { m_hasAnchor = true; }
// reset old settings
unsigned lastIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
assert(m_curIndent >= lastIndent);
m_curIndent -= lastIndent;
// some global settings that we changed may have been overridden
// by a local setting we just popped, so we need to restore them
m_globalModifiedSettings.restore();
}
GROUP_TYPE EmitterState::GetCurGroupType() const
{
if(m_groups.empty())
return GT_NONE;
return m_groups.top().type;
}
FLOW_TYPE EmitterState::GetCurGroupFlowType() const
{
if(m_groups.empty())
return FT_NONE;
return (m_groups.top().flow == Flow ? FT_FLOW : FT_BLOCK);
}
bool EmitterState::CurrentlyInLongKey()
{
if(m_groups.empty())
return false;
return m_groups.top().usingLongKey;
}
void EmitterState::StartLongKey()
{
if(!m_groups.empty())
m_groups.top().usingLongKey = true;
}
void EmitterState::StartSimpleKey()
{
if(!m_groups.empty())
m_groups.top().usingLongKey = false;
}
void EmitterState::SetAlias() { m_hasAlias = true; }
void EmitterState::ClearModifiedSettings()
{
m_modifiedSettings.clear();
}
void EmitterState::SetTag() { m_hasTag = true; }
bool EmitterState::SetOutputCharset(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case EmitNonAscii:
case EscapeNonAscii:
_Set(m_charset, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetStringFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case Auto:
case SingleQuoted:
case DoubleQuoted:
case Literal:
_Set(m_strFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case OnOffBool:
case TrueFalseBool:
case YesNoBool:
_Set(m_boolFmt, value, scope);
return true;
default:
return false;
}
}
void EmitterState::SetNonContent() { m_hasNonContent = true; }
bool EmitterState::SetBoolLengthFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case LongBool:
case ShortBool:
_Set(m_boolLengthFmt, value, scope);
return true;
default:
return false;
}
}
void EmitterState::SetLongKey() {
assert(!m_groups.empty());
if (m_groups.empty()) {
return;
}
bool EmitterState::SetBoolCaseFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case UpperCase:
case LowerCase:
case CamelCase:
_Set(m_boolCaseFmt, value, scope);
return true;
default:
return false;
}
}
assert(m_groups.back()->type == GroupType::Map);
m_groups.back()->longKey = true;
}
bool EmitterState::SetIntFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case Dec:
case Hex:
case Oct:
_Set(m_intFmt, value, scope);
return true;
default:
return false;
}
}
void EmitterState::ForceFlow() {
assert(!m_groups.empty());
if (m_groups.empty()) {
return;
}
bool EmitterState::SetIndent(unsigned value, FMT_SCOPE scope)
{
if(value == 0)
return false;
_Set(m_indent, value, scope);
return true;
}
m_groups.back()->flowType = FlowType::Flow;
}
bool EmitterState::SetPreCommentIndent(unsigned value, FMT_SCOPE scope)
{
if(value == 0)
return false;
_Set(m_preCommentIndent, value, scope);
return true;
}
bool EmitterState::SetPostCommentIndent(unsigned value, FMT_SCOPE scope)
{
if(value == 0)
return false;
_Set(m_postCommentIndent, value, scope);
return true;
}
void EmitterState::StartedNode() {
if (m_groups.empty()) {
m_docCount++;
} else {
m_groups.back()->childCount++;
if (m_groups.back()->childCount % 2 == 0) {
m_groups.back()->longKey = false;
bool EmitterState::SetFlowType(GROUP_TYPE groupType, EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case Block:
case Flow:
_Set(groupType == GT_SEQ ? m_seqFmt : m_mapFmt, value, scope);
return true;
default:
return false;
}
}
EMITTER_MANIP EmitterState::GetFlowType(GROUP_TYPE groupType) const
{
// force flow style if we're currently in a flow
FLOW_TYPE flowType = GetCurGroupFlowType();
if(flowType == FT_FLOW)
return Flow;
// otherwise, go with what's asked of use
return (groupType == GT_SEQ ? m_seqFmt.get() : m_mapFmt.get());
}
bool EmitterState::SetMapKeyFormat(EMITTER_MANIP value, FMT_SCOPE scope)
{
switch(value) {
case Auto:
case LongKey:
_Set(m_mapKeyFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetFloatPrecision(int value, FMT_SCOPE scope)
{
if(value < 0 || value > std::numeric_limits<float>::digits10)
return false;
_Set(m_floatPrecision, value, scope);
return true;
}
}
m_hasAnchor = false;
m_hasAlias = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::NextGroupType(
GroupType::value type) const {
if (type == GroupType::Seq) {
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockSeq;
return EmitterNodeType::FlowSeq;
}
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockMap;
return EmitterNodeType::FlowMap;
// can't happen
assert(false);
return EmitterNodeType::NoType;
}
void EmitterState::StartedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::EndedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::StartedScalar() {
StartedNode();
ClearModifiedSettings();
}
void EmitterState::StartedGroup(GroupType::value type) {
StartedNode();
const std::size_t lastGroupIndent =
(m_groups.empty() ? 0 : m_groups.back()->indent);
m_curIndent += lastGroupIndent;
// TODO: Create move constructors for settings types to simplify transfer
std::unique_ptr<Group> pGroup(new Group(type));
// transfer settings (which last until this group is done)
//
// NB: if pGroup->modifiedSettings == m_modifiedSettings,
// m_modifiedSettings is not changed!
pGroup->modifiedSettings = std::move(m_modifiedSettings);
// set up group
if (GetFlowType(type) == Block) {
pGroup->flowType = FlowType::Block;
} else {
pGroup->flowType = FlowType::Flow;
}
pGroup->indent = GetIndent();
m_groups.push_back(std::move(pGroup));
}
void EmitterState::EndedGroup(GroupType::value type) {
if (m_groups.empty()) {
if (type == GroupType::Seq) {
return SetError(ErrorMsg::UNEXPECTED_END_SEQ);
bool EmitterState::SetDoublePrecision(int value, FMT_SCOPE scope)
{
if(value < 0 || value > std::numeric_limits<double>::digits10)
return false;
_Set(m_doublePrecision, value, scope);
return true;
}
return SetError(ErrorMsg::UNEXPECTED_END_MAP);
}
if (m_hasTag) {
SetError(ErrorMsg::INVALID_TAG);
}
if (m_hasAnchor) {
SetError(ErrorMsg::INVALID_ANCHOR);
}
// get rid of the current group
{
std::unique_ptr<Group> pFinishedGroup = std::move(m_groups.back());
m_groups.pop_back();
if (pFinishedGroup->type != type) {
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
}
}
// reset old settings
std::size_t lastIndent = (m_groups.empty() ? 0 : m_groups.back()->indent);
assert(m_curIndent >= lastIndent);
m_curIndent -= lastIndent;
// some global settings that we changed may have been overridden
// by a local setting we just popped, so we need to restore them
m_globalModifiedSettings.restore();
ClearModifiedSettings();
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::CurGroupNodeType() const {
if (m_groups.empty()) {
return EmitterNodeType::NoType;
}
return m_groups.back()->NodeType();
}
GroupType::value EmitterState::CurGroupType() const {
return m_groups.empty() ? GroupType::NoType : m_groups.back()->type;
}
FlowType::value EmitterState::CurGroupFlowType() const {
return m_groups.empty() ? FlowType::NoType : m_groups.back()->flowType;
}
std::size_t EmitterState::CurGroupIndent() const {
return m_groups.empty() ? 0 : m_groups.back()->indent;
}
std::size_t EmitterState::CurGroupChildCount() const {
return m_groups.empty() ? m_docCount : m_groups.back()->childCount;
}
bool EmitterState::CurGroupLongKey() const {
return m_groups.empty() ? false : m_groups.back()->longKey;
}
std::size_t EmitterState::LastIndent() const {
if (m_groups.size() <= 1) {
return 0;
}
return m_curIndent - m_groups[m_groups.size() - 2]->indent;
}
void EmitterState::ClearModifiedSettings() { m_modifiedSettings.clear(); }
void EmitterState::RestoreGlobalModifiedSettings() {
m_globalModifiedSettings.restore();
}
bool EmitterState::SetOutputCharset(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case EmitNonAscii:
case EscapeNonAscii:
case EscapeAsJson:
_Set(m_charset, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetStringFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case SingleQuoted:
case DoubleQuoted:
case Literal:
_Set(m_strFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case OnOffBool:
case TrueFalseBool:
case YesNoBool:
_Set(m_boolFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolLengthFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case LongBool:
case ShortBool:
_Set(m_boolLengthFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolCaseFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case UpperCase:
case LowerCase:
case CamelCase:
_Set(m_boolCaseFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetNullFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case LowerNull:
case UpperNull:
case CamelNull:
case TildeNull:
_Set(m_nullFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIntFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Dec:
case Hex:
case Oct:
_Set(m_intFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIndent(std::size_t value, FmtScope::value scope) {
if (value <= 1)
return false;
_Set(m_indent, value, scope);
return true;
}
bool EmitterState::SetPreCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_preCommentIndent, value, scope);
return true;
}
bool EmitterState::SetPostCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_postCommentIndent, value, scope);
return true;
}
bool EmitterState::SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case Block:
case Flow:
_Set(groupType == GroupType::Seq ? m_seqFmt : m_mapFmt, value, scope);
return true;
default:
return false;
}
}
EMITTER_MANIP EmitterState::GetFlowType(GroupType::value groupType) const {
// force flow style if we're currently in a flow
if (CurGroupFlowType() == FlowType::Flow)
return Flow;
// otherwise, go with what's asked of us
return (groupType == GroupType::Seq ? m_seqFmt.get() : m_mapFmt.get());
}
bool EmitterState::SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case LongKey:
_Set(m_mapKeyFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetFloatPrecision(std::size_t value, FmtScope::value scope) {
if (value > std::numeric_limits<float>::max_digits10)
return false;
_Set(m_floatPrecision, value, scope);
return true;
}
bool EmitterState::SetDoublePrecision(std::size_t value,
FmtScope::value scope) {
if (value > std::numeric_limits<double>::max_digits10)
return false;
_Set(m_doublePrecision, value, scope);
return true;
}
} // namespace YAML

View File

@ -1,216 +1,217 @@
#ifndef EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "ptr_stack.h"
#include "setting.h"
#include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/emittermanip.h"
#include <cassert>
#include <memory>
#include <stack>
#include <stdexcept>
#include <vector>
#include <stack>
#include <memory>
namespace YAML {
struct FmtScope {
enum value { Local, Global };
};
struct GroupType {
enum value { NoType, Seq, Map };
};
struct FlowType {
enum value { NoType, Flow, Block };
};
namespace YAML
{
enum FMT_SCOPE {
LOCAL,
GLOBAL
};
enum GROUP_TYPE {
GT_NONE,
GT_SEQ,
GT_MAP
};
enum FLOW_TYPE {
FT_NONE,
FT_FLOW,
FT_BLOCK
};
enum NODE_STATE {
NS_START,
NS_READY_FOR_ATOM,
NS_END
};
enum EMITTER_STATE {
ES_WAITING_FOR_DOC,
ES_WRITING_DOC,
ES_DONE_WITH_DOC,
// block seq
ES_WAITING_FOR_BLOCK_SEQ_ENTRY,
ES_WRITING_BLOCK_SEQ_ENTRY,
ES_DONE_WITH_BLOCK_SEQ_ENTRY,
// flow seq
ES_WAITING_FOR_FLOW_SEQ_ENTRY,
ES_WRITING_FLOW_SEQ_ENTRY,
ES_DONE_WITH_FLOW_SEQ_ENTRY,
// block map
ES_WAITING_FOR_BLOCK_MAP_ENTRY,
ES_WAITING_FOR_BLOCK_MAP_KEY,
ES_WRITING_BLOCK_MAP_KEY,
ES_DONE_WITH_BLOCK_MAP_KEY,
ES_WAITING_FOR_BLOCK_MAP_VALUE,
ES_WRITING_BLOCK_MAP_VALUE,
ES_DONE_WITH_BLOCK_MAP_VALUE,
// flow map
ES_WAITING_FOR_FLOW_MAP_ENTRY,
ES_WAITING_FOR_FLOW_MAP_KEY,
ES_WRITING_FLOW_MAP_KEY,
ES_DONE_WITH_FLOW_MAP_KEY,
ES_WAITING_FOR_FLOW_MAP_VALUE,
ES_WRITING_FLOW_MAP_VALUE,
ES_DONE_WITH_FLOW_MAP_VALUE
};
class EmitterState
{
public:
EmitterState();
~EmitterState();
// basic state checking
bool good() const { return m_isGood; }
const std::string GetLastError() const { return m_lastError; }
void SetError(const std::string& error) { m_isGood = false; m_lastError = error; }
// main state of the machine
EMITTER_STATE GetCurState() const { return m_stateStack.top(); }
void SwitchState(EMITTER_STATE state) { PopState(); PushState(state); }
void PushState(EMITTER_STATE state) { m_stateStack.push(state); }
void PopState() { m_stateStack.pop(); }
void SetLocalValue(EMITTER_MANIP value);
// group handling
void BeginGroup(GROUP_TYPE type);
void EndGroup(GROUP_TYPE type);
GROUP_TYPE GetCurGroupType() const;
FLOW_TYPE GetCurGroupFlowType() const;
int GetCurIndent() const { return m_curIndent; }
bool CurrentlyInLongKey();
void StartLongKey();
void StartSimpleKey();
class EmitterState {
public:
EmitterState();
~EmitterState();
bool RequiresSoftSeparation() const { return m_requiresSoftSeparation; }
bool RequiresHardSeparation() const { return m_requiresHardSeparation; }
void RequireSoftSeparation() { m_requiresSoftSeparation = true; }
void RequireHardSeparation() { m_requiresSoftSeparation = true; m_requiresHardSeparation = true; }
void ForceHardSeparation() { m_requiresSoftSeparation = false; }
void UnsetSeparation() { m_requiresSoftSeparation = false; m_requiresHardSeparation = false; }
// basic state checking
bool good() const { return m_isGood; }
const std::string GetLastError() const { return m_lastError; }
void SetError(const std::string& error) {
m_isGood = false;
m_lastError = error;
}
void ClearModifiedSettings();
// node handling
void SetAnchor();
void SetAlias();
void SetTag();
void SetNonContent();
void SetLongKey();
void ForceFlow();
void StartedDoc();
void EndedDoc();
void StartedScalar();
void StartedGroup(GroupType::value type);
void EndedGroup(GroupType::value type);
// formatters
bool SetOutputCharset(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetOutputCharset() const { return m_charset.get(); }
EmitterNodeType::value NextGroupType(GroupType::value type) const;
EmitterNodeType::value CurGroupNodeType() const;
bool SetStringFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetStringFormat() const { return m_strFmt.get(); }
bool SetBoolFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetBoolFormat() const { return m_boolFmt.get(); }
GroupType::value CurGroupType() const;
FlowType::value CurGroupFlowType() const;
std::size_t CurGroupIndent() const;
std::size_t CurGroupChildCount() const;
bool CurGroupLongKey() const;
bool SetBoolLengthFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetBoolLengthFormat() const { return m_boolLengthFmt.get(); }
std::size_t LastIndent() const;
std::size_t CurIndent() const { return m_curIndent; }
bool HasAnchor() const { return m_hasAnchor; }
bool HasAlias() const { return m_hasAlias; }
bool HasTag() const { return m_hasTag; }
bool HasBegunNode() const {
return m_hasAnchor || m_hasTag || m_hasNonContent;
}
bool HasBegunContent() const { return m_hasAnchor || m_hasTag; }
bool SetBoolCaseFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetBoolCaseFormat() const { return m_boolCaseFmt.get(); }
void ClearModifiedSettings();
void RestoreGlobalModifiedSettings();
bool SetIntFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetIntFormat() const { return m_intFmt.get(); }
// formatters
void SetLocalValue(EMITTER_MANIP value);
bool SetIndent(unsigned value, FMT_SCOPE scope);
int GetIndent() const { return m_indent.get(); }
bool SetPreCommentIndent(unsigned value, FMT_SCOPE scope);
int GetPreCommentIndent() const { return m_preCommentIndent.get(); }
bool SetPostCommentIndent(unsigned value, FMT_SCOPE scope);
int GetPostCommentIndent() const { return m_postCommentIndent.get(); }
bool SetFlowType(GROUP_TYPE groupType, EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetFlowType(GROUP_TYPE groupType) const;
bool SetMapKeyFormat(EMITTER_MANIP value, FMT_SCOPE scope);
EMITTER_MANIP GetMapKeyFormat() const { return m_mapKeyFmt.get(); }
bool SetFloatPrecision(int value, FMT_SCOPE scope);
unsigned GetFloatPrecision() const { return m_floatPrecision.get(); }
bool SetDoublePrecision(int value, FMT_SCOPE scope);
unsigned GetDoublePrecision() const { return m_doublePrecision.get(); }
private:
template <typename T>
void _Set(Setting<T>& fmt, T value, FMT_SCOPE scope);
private:
// basic state ok?
bool m_isGood;
std::string m_lastError;
// other state
std::stack<EMITTER_STATE> m_stateStack;
Setting<EMITTER_MANIP> m_charset;
Setting<EMITTER_MANIP> m_strFmt;
Setting<EMITTER_MANIP> m_boolFmt;
Setting<EMITTER_MANIP> m_boolLengthFmt;
Setting<EMITTER_MANIP> m_boolCaseFmt;
Setting<EMITTER_MANIP> m_intFmt;
Setting<unsigned> m_indent;
Setting<unsigned> m_preCommentIndent, m_postCommentIndent;
Setting<EMITTER_MANIP> m_seqFmt;
Setting<EMITTER_MANIP> m_mapFmt;
Setting<EMITTER_MANIP> m_mapKeyFmt;
Setting<int> m_floatPrecision;
Setting<int> m_doublePrecision;
SettingChanges m_modifiedSettings;
SettingChanges m_globalModifiedSettings;
struct Group {
Group(GROUP_TYPE type_): type(type_), usingLongKey(false), indent(0) {}
GROUP_TYPE type;
EMITTER_MANIP flow;
bool usingLongKey;
int indent;
SettingChanges modifiedSettings;
};
bool SetOutputCharset(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetOutputCharset() const { return m_charset.get(); }
ptr_stack<Group> m_groups;
unsigned m_curIndent;
bool m_requiresSoftSeparation;
bool m_requiresHardSeparation;
};
bool SetStringFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetStringFormat() const { return m_strFmt.get(); }
bool SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolFormat() const { return m_boolFmt.get(); }
bool SetBoolLengthFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolLengthFormat() const { return m_boolLengthFmt.get(); }
bool SetBoolCaseFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolCaseFormat() const { return m_boolCaseFmt.get(); }
bool SetNullFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetNullFormat() const { return m_nullFmt.get(); }
bool SetIntFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetIntFormat() const { return m_intFmt.get(); }
bool SetIndent(std::size_t value, FmtScope::value scope);
std::size_t GetIndent() const { return m_indent.get(); }
bool SetPreCommentIndent(std::size_t value, FmtScope::value scope);
std::size_t GetPreCommentIndent() const { return m_preCommentIndent.get(); }
bool SetPostCommentIndent(std::size_t value, FmtScope::value scope);
std::size_t GetPostCommentIndent() const { return m_postCommentIndent.get(); }
bool SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
FmtScope::value scope);
EMITTER_MANIP GetFlowType(GroupType::value groupType) const;
bool SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetMapKeyFormat() const { return m_mapKeyFmt.get(); }
bool SetFloatPrecision(std::size_t value, FmtScope::value scope);
std::size_t GetFloatPrecision() const { return m_floatPrecision.get(); }
bool SetDoublePrecision(std::size_t value, FmtScope::value scope);
std::size_t GetDoublePrecision() const { return m_doublePrecision.get(); }
private:
template <typename T>
void _Set(Setting<T>& fmt, T value, FmtScope::value scope);
void StartedNode();
private:
// basic state ok?
bool m_isGood;
std::string m_lastError;
// other state
Setting<EMITTER_MANIP> m_charset;
Setting<EMITTER_MANIP> m_strFmt;
Setting<EMITTER_MANIP> m_boolFmt;
Setting<EMITTER_MANIP> m_boolLengthFmt;
Setting<EMITTER_MANIP> m_boolCaseFmt;
Setting<EMITTER_MANIP> m_nullFmt;
Setting<EMITTER_MANIP> m_intFmt;
Setting<std::size_t> m_indent;
Setting<std::size_t> m_preCommentIndent, m_postCommentIndent;
Setting<EMITTER_MANIP> m_seqFmt;
Setting<EMITTER_MANIP> m_mapFmt;
Setting<EMITTER_MANIP> m_mapKeyFmt;
Setting<std::size_t> m_floatPrecision;
Setting<std::size_t> m_doublePrecision;
SettingChanges m_modifiedSettings;
SettingChanges m_globalModifiedSettings;
struct Group {
explicit Group(GroupType::value type_)
: type(type_),
flowType{},
indent(0),
childCount(0),
longKey(false),
modifiedSettings{} {}
GroupType::value type;
FlowType::value flowType;
std::size_t indent;
std::size_t childCount;
bool longKey;
SettingChanges modifiedSettings;
EmitterNodeType::value NodeType() const {
if (type == GroupType::Seq) {
if (flowType == FlowType::Flow)
return EmitterNodeType::FlowSeq;
else
return EmitterNodeType::BlockSeq;
} else {
if (flowType == FlowType::Flow)
return EmitterNodeType::FlowMap;
else
return EmitterNodeType::BlockMap;
}
// can't get here
assert(false);
return EmitterNodeType::NoType;
}
};
std::vector<std::unique_ptr<Group>> m_groups;
std::size_t m_curIndent;
bool m_hasAnchor;
bool m_hasAlias;
bool m_hasTag;
bool m_hasNonContent;
std::size_t m_docCount;
};
template <typename T>
void EmitterState::_Set(Setting<T>& fmt, T value, FmtScope::value scope) {
switch (scope) {
case FmtScope::Local:
m_modifiedSettings.push(fmt.set(value));
break;
case FmtScope::Global:
fmt.set(value);
m_globalModifiedSettings.push(
fmt.set(value)); // this pushes an identity set, so when we restore,
// it restores to the value here, and not the previous one
break;
default:
assert(false);
}
template <typename T>
void EmitterState::_Set(Setting<T>& fmt, T value, FMT_SCOPE scope) {
switch(scope) {
case LOCAL:
m_modifiedSettings.push(fmt.set(value));
break;
case GLOBAL:
fmt.set(value);
m_globalModifiedSettings.push(fmt.set(value)); // this pushes an identity set, so when we restore,
// it restores to the value here, and not the previous one
break;
default:
assert(false);
}
}
}
} // namespace YAML
#endif // EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,499 +1,378 @@
#include <algorithm>
#include <cstdint>
#include <iomanip>
#include <sstream>
#include "emitterutils.h"
#include "exp.h"
#include "indentation.h"
#include "regex_yaml.h"
#include "regeximpl.h"
#include "yaml-cpp/binary.h"
#include "yaml-cpp/exceptions.h"
#include "stringsource.h"
#include "yaml-cpp/binary.h" // IWYU pragma: keep
#include "yaml-cpp/null.h"
#include "yaml-cpp/ostream_wrapper.h"
#include <sstream>
#include <iomanip>
namespace YAML {
namespace Utils {
namespace {
enum { REPLACEMENT_CHARACTER = 0xFFFD };
namespace YAML
{
namespace Utils
{
namespace {
enum {REPLACEMENT_CHARACTER = 0xFFFD};
bool IsAnchorChar(int ch) { // test for ns-anchor-char
switch (ch) {
case ',':
case '[':
case ']':
case '{':
case '}': // c-flow-indicator
case ' ':
case '\t': // s-white
case 0xFEFF: // c-byte-order-mark
case 0xA:
case 0xD: // b-char
return false;
case 0x85:
return true;
}
bool IsAnchorChar(int ch) { // test for ns-anchor-char
switch (ch) {
case ',': case '[': case ']': case '{': case '}': // c-flow-indicator
case ' ': case '\t': // s-white
case 0xFEFF: // c-byte-order-mark
case 0xA: case 0xD: // b-char
return false;
case 0x85:
return true;
}
if (ch < 0x20) {
return false;
}
if (ch < 0x20)
return false;
if (ch < 0x7E) {
return true;
}
if (ch < 0x7E)
return true;
if (ch < 0xA0) {
return false;
}
if (ch >= 0xD800 && ch <= 0xDFFF) {
return false;
}
if ((ch & 0xFFFE) == 0xFFFE) {
return false;
}
if ((ch >= 0xFDD0) && (ch <= 0xFDEF)) {
return false;
}
if (ch > 0x10FFFF) {
return false;
}
if (ch < 0xA0)
return false;
if (ch >= 0xD800 && ch <= 0xDFFF)
return false;
if ((ch & 0xFFFE) == 0xFFFE)
return false;
if ((ch >= 0xFDD0) && (ch <= 0xFDEF))
return false;
if (ch > 0x10FFFF)
return false;
return true;
return true;
}
int Utf8BytesIndicated(char ch) {
int byteVal = static_cast<unsigned char>(ch);
switch (byteVal >> 4) {
case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7:
return 1;
case 12: case 13:
return 2;
case 14:
return 3;
case 15:
return 4;
default:
return -1;
}
}
bool IsTrailingByte(char ch) {
return (ch & 0xC0) == 0x80;
}
bool GetNextCodePointAndAdvance(int& codePoint, std::string::const_iterator& first, std::string::const_iterator last) {
if (first == last)
return false;
int nBytes = Utf8BytesIndicated(*first);
if (nBytes < 1) {
// Bad lead byte
++first;
codePoint = REPLACEMENT_CHARACTER;
return true;
}
if (nBytes == 1) {
codePoint = *first++;
return true;
}
// Gather bits from trailing bytes
codePoint = static_cast<unsigned char>(*first) & ~(0xFF << (7 - nBytes));
++first;
--nBytes;
for (; nBytes > 0; ++first, --nBytes) {
if ((first == last) || !IsTrailingByte(*first)) {
codePoint = REPLACEMENT_CHARACTER;
break;
}
codePoint <<= 6;
codePoint |= *first & 0x3F;
}
// Check for illegal code points
if (codePoint > 0x10FFFF)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xD800 && codePoint <= 0xDFFF)
codePoint = REPLACEMENT_CHARACTER;
else if ((codePoint & 0xFFFE) == 0xFFFE)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xFDD0 && codePoint <= 0xFDEF)
codePoint = REPLACEMENT_CHARACTER;
return true;
}
void WriteCodePoint(ostream& out, int codePoint) {
if (codePoint < 0 || codePoint > 0x10FFFF) {
codePoint = REPLACEMENT_CHARACTER;
}
if (codePoint < 0x7F) {
out << static_cast<char>(codePoint);
} else if (codePoint < 0x7FF) {
out << static_cast<char>(0xC0 | (codePoint >> 6))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else if (codePoint < 0xFFFF) {
out << static_cast<char>(0xE0 | (codePoint >> 12))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else {
out << static_cast<char>(0xF0 | (codePoint >> 18))
<< static_cast<char>(0x80 | ((codePoint >> 12) & 0x3F))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
}
}
bool IsValidPlainScalar(const std::string& str, bool inFlow, bool allowOnlyAscii) {
if(str.empty())
return false;
// first check the start
const RegEx& start = (inFlow ? Exp::PlainScalarInFlow() : Exp::PlainScalar());
if(!start.Matches(str))
return false;
// and check the end for plain whitespace (which can't be faithfully kept in a plain scalar)
if(!str.empty() && *str.rbegin() == ' ')
return false;
// then check until something is disallowed
const RegEx& disallowed = (inFlow ? Exp::EndScalarInFlow() : Exp::EndScalar())
|| (Exp::BlankOrBreak() + Exp::Comment())
|| Exp::NotPrintable()
|| Exp::Utf8_ByteOrderMark()
|| Exp::Break()
|| Exp::Tab();
StringCharSource buffer(str.c_str(), str.size());
while(buffer) {
if(disallowed.Matches(buffer))
return false;
if(allowOnlyAscii && (0x7F < static_cast<unsigned char>(buffer[0])))
return false;
++buffer;
}
return true;
}
void WriteDoubleQuoteEscapeSequence(ostream& out, int codePoint) {
static const char hexDigits[] = "0123456789abcdef";
char escSeq[] = "\\U00000000";
int digits = 8;
if (codePoint < 0xFF) {
escSeq[1] = 'x';
digits = 2;
} else if (codePoint < 0xFFFF) {
escSeq[1] = 'u';
digits = 4;
}
// Write digits into the escape sequence
int i = 2;
for (; digits > 0; --digits, ++i) {
escSeq[i] = hexDigits[(codePoint >> (4 * (digits - 1))) & 0xF];
}
escSeq[i] = 0; // terminate with NUL character
out << escSeq;
}
bool WriteAliasName(ostream& out, const std::string& str) {
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (!IsAnchorChar(codePoint))
return false;
WriteCodePoint(out, codePoint);
}
return true;
}
}
bool WriteString(ostream& out, const std::string& str, bool inFlow, bool escapeNonAscii)
{
if(IsValidPlainScalar(str, inFlow, escapeNonAscii)) {
out << str;
return true;
} else
return WriteDoubleQuotedString(out, str, escapeNonAscii);
}
bool WriteSingleQuotedString(ostream& out, const std::string& str)
{
out << "'";
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (codePoint == '\n')
return false; // We can't handle a new line and the attendant indentation yet
if (codePoint == '\'')
out << "''";
else
WriteCodePoint(out, codePoint);
}
out << "'";
return true;
}
bool WriteDoubleQuotedString(ostream& out, const std::string& str, bool escapeNonAscii)
{
out << "\"";
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (codePoint == '\"')
out << "\\\"";
else if (codePoint == '\\')
out << "\\\\";
else if (codePoint < 0x20 || (codePoint >= 0x80 && codePoint <= 0xA0)) // Control characters and non-breaking space
WriteDoubleQuoteEscapeSequence(out, codePoint);
else if (codePoint == 0xFEFF) // Byte order marks (ZWNS) should be escaped (YAML 1.2, sec. 5.2)
WriteDoubleQuoteEscapeSequence(out, codePoint);
else if (escapeNonAscii && codePoint > 0x7E)
WriteDoubleQuoteEscapeSequence(out, codePoint);
else
WriteCodePoint(out, codePoint);
}
out << "\"";
return true;
}
bool WriteLiteralString(ostream& out, const std::string& str, int indent)
{
out << "|\n";
out << IndentTo(indent);
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (codePoint == '\n')
out << "\n" << IndentTo(indent);
else
WriteCodePoint(out, codePoint);
}
return true;
}
bool WriteChar(ostream& out, char ch)
{
if(('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z'))
out << ch;
else if((0x20 <= ch && ch <= 0x7e) || ch == ' ')
out << "\"" << ch << "\"";
else if(ch == '\t')
out << "\"\\t\"";
else if(ch == '\n')
out << "\"\\n\"";
else if(ch == '\b')
out << "\"\\b\"";
else {
out << "\"";
WriteDoubleQuoteEscapeSequence(out, ch);
out << "\"";
}
return true;
}
bool WriteComment(ostream& out, const std::string& str, int postCommentIndent)
{
const unsigned curIndent = out.col();
out << "#" << Indentation(postCommentIndent);
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if(codePoint == '\n')
out << "\n" << IndentTo(curIndent) << "#" << Indentation(postCommentIndent);
else
WriteCodePoint(out, codePoint);
}
return true;
}
bool WriteAlias(ostream& out, const std::string& str)
{
out << "*";
return WriteAliasName(out, str);
}
bool WriteAnchor(ostream& out, const std::string& str)
{
out << "&";
return WriteAliasName(out, str);
}
bool WriteTag(ostream& out, const std::string& str, bool verbatim)
{
out << (verbatim ? "!<" : "!");
StringCharSource buffer(str.c_str(), str.size());
const RegEx& reValid = verbatim ? Exp::URI() : Exp::Tag();
while(buffer) {
int n = reValid.Match(buffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << buffer[0];
++buffer;
}
}
if (verbatim)
out << ">";
return true;
}
bool WriteTagWithPrefix(ostream& out, const std::string& prefix, const std::string& tag)
{
out << "!";
StringCharSource prefixBuffer(prefix.c_str(), prefix.size());
while(prefixBuffer) {
int n = Exp::URI().Match(prefixBuffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << prefixBuffer[0];
++prefixBuffer;
}
}
out << "!";
StringCharSource tagBuffer(tag.c_str(), tag.size());
while(tagBuffer) {
int n = Exp::Tag().Match(tagBuffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << tagBuffer[0];
++tagBuffer;
}
}
return true;
}
bool WriteBinary(ostream& out, const Binary& binary)
{
WriteDoubleQuotedString(out, EncodeBase64(binary.data(), binary.size()), false);
return true;
}
}
}
int Utf8BytesIndicated(char ch) {
int byteVal = static_cast<unsigned char>(ch);
switch (byteVal >> 4) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
return 1;
case 12:
case 13:
return 2;
case 14:
return 3;
case 15:
return 4;
default:
return -1;
}
}
bool IsTrailingByte(char ch) { return (ch & 0xC0) == 0x80; }
bool GetNextCodePointAndAdvance(int& codePoint,
const char*& first,
const char* last) {
if (first == last)
return false;
int nBytes = Utf8BytesIndicated(*first);
if (nBytes < 1) {
// Bad lead byte
++first;
codePoint = REPLACEMENT_CHARACTER;
return true;
}
if (nBytes == 1) {
codePoint = *first++;
return true;
}
// Gather bits from trailing bytes
codePoint = static_cast<unsigned char>(*first) & ~(0xFF << (7 - nBytes));
++first;
--nBytes;
for (; nBytes > 0; ++first, --nBytes) {
if ((first == last) || !IsTrailingByte(*first)) {
codePoint = REPLACEMENT_CHARACTER;
break;
}
codePoint <<= 6;
codePoint |= *first & 0x3F;
}
// Check for illegal code points
if (codePoint > 0x10FFFF)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xD800 && codePoint <= 0xDFFF)
codePoint = REPLACEMENT_CHARACTER;
else if ((codePoint & 0xFFFE) == 0xFFFE)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xFDD0 && codePoint <= 0xFDEF)
codePoint = REPLACEMENT_CHARACTER;
return true;
}
void WriteCodePoint(ostream_wrapper& out, int codePoint) {
if (codePoint < 0 || codePoint > 0x10FFFF) {
codePoint = REPLACEMENT_CHARACTER;
}
if (codePoint <= 0x7F) {
out << static_cast<char>(codePoint);
} else if (codePoint <= 0x7FF) {
out << static_cast<char>(0xC0 | (codePoint >> 6))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else if (codePoint <= 0xFFFF) {
out << static_cast<char>(0xE0 | (codePoint >> 12))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else {
out << static_cast<char>(0xF0 | (codePoint >> 18))
<< static_cast<char>(0x80 | ((codePoint >> 12) & 0x3F))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
}
}
bool IsValidPlainScalar(const char* str, std::size_t size, FlowType::value flowType,
bool allowOnlyAscii) {
// check against null
if (IsNullString(str, size)) {
return false;
}
// check the start
const RegEx& start = (flowType == FlowType::Flow ? Exp::PlainScalarInFlow()
: Exp::PlainScalar());
if (!start.Matches(StringCharSource(str, size))) {
return false;
}
// and check the end for plain whitespace (which can't be faithfully kept in a
// plain scalar)
if (size != 0 && str[size - 1] == ' ') {
return false;
}
// then check until something is disallowed
static const RegEx disallowed_flow =
Exp::EndScalarInFlow() | (Exp::BlankOrBreak() + Exp::Comment()) |
Exp::NotPrintable() | Exp::Utf8_ByteOrderMark() | Exp::Break() |
Exp::Tab() | Exp::Ampersand();
static const RegEx disallowed_block =
Exp::EndScalar() | (Exp::BlankOrBreak() + Exp::Comment()) |
Exp::NotPrintable() | Exp::Utf8_ByteOrderMark() | Exp::Break() |
Exp::Tab() | Exp::Ampersand();
const RegEx& disallowed =
flowType == FlowType::Flow ? disallowed_flow : disallowed_block;
StringCharSource buffer(str, size);
while (buffer) {
if (disallowed.Matches(buffer)) {
return false;
}
if (allowOnlyAscii && (0x80 <= static_cast<unsigned char>(buffer[0]))) {
return false;
}
++buffer;
}
return true;
}
bool IsValidSingleQuotedScalar(const char* str, std::size_t size, bool escapeNonAscii) {
// TODO: check for non-printable characters?
return std::none_of(str, str + size, [=](char ch) {
return (escapeNonAscii && (0x80 <= static_cast<unsigned char>(ch))) ||
(ch == '\n');
});
}
bool IsValidLiteralScalar(const char* str, std::size_t size, FlowType::value flowType,
bool escapeNonAscii) {
if (flowType == FlowType::Flow) {
return false;
}
// TODO: check for non-printable characters?
return std::none_of(str, str + size, [=](char ch) {
return (escapeNonAscii && (0x80 <= static_cast<unsigned char>(ch)));
});
}
std::pair<uint16_t, uint16_t> EncodeUTF16SurrogatePair(int codePoint) {
const uint32_t leadOffset = 0xD800 - (0x10000 >> 10);
return {
leadOffset | (codePoint >> 10),
0xDC00 | (codePoint & 0x3FF),
};
}
void WriteDoubleQuoteEscapeSequence(ostream_wrapper& out, int codePoint, StringEscaping::value stringEscapingStyle) {
static const char hexDigits[] = "0123456789abcdef";
out << "\\";
int digits = 8;
if (codePoint < 0xFF && stringEscapingStyle != StringEscaping::JSON) {
out << "x";
digits = 2;
} else if (codePoint < 0xFFFF) {
out << "u";
digits = 4;
} else if (stringEscapingStyle != StringEscaping::JSON) {
out << "U";
digits = 8;
} else {
auto surrogatePair = EncodeUTF16SurrogatePair(codePoint);
WriteDoubleQuoteEscapeSequence(out, surrogatePair.first, stringEscapingStyle);
WriteDoubleQuoteEscapeSequence(out, surrogatePair.second, stringEscapingStyle);
return;
}
// Write digits into the escape sequence
for (; digits > 0; --digits)
out << hexDigits[(codePoint >> (4 * (digits - 1))) & 0xF];
}
bool WriteAliasName(ostream_wrapper& out, const char* str, std::size_t size) {
int codePoint;
for (const char* i = str;
GetNextCodePointAndAdvance(codePoint, i, str + size);) {
if (!IsAnchorChar(codePoint)) {
return false;
}
WriteCodePoint(out, codePoint);
}
return true;
}
} // namespace
StringFormat::value ComputeStringFormat(const char* str, std::size_t size,
EMITTER_MANIP strFormat,
FlowType::value flowType,
bool escapeNonAscii) {
switch (strFormat) {
case Auto:
if (IsValidPlainScalar(str, size, flowType, escapeNonAscii)) {
return StringFormat::Plain;
}
return StringFormat::DoubleQuoted;
case SingleQuoted:
if (IsValidSingleQuotedScalar(str, size, escapeNonAscii)) {
return StringFormat::SingleQuoted;
}
return StringFormat::DoubleQuoted;
case DoubleQuoted:
return StringFormat::DoubleQuoted;
case Literal:
if (IsValidLiteralScalar(str, size, flowType, escapeNonAscii)) {
return StringFormat::Literal;
}
return StringFormat::DoubleQuoted;
default:
break;
}
return StringFormat::DoubleQuoted;
}
bool WriteSingleQuotedString(ostream_wrapper& out, const char* str, std::size_t size) {
out << "'";
int codePoint;
for (const char* i = str;
GetNextCodePointAndAdvance(codePoint, i, str + size);) {
if (codePoint == '\n') {
return false; // We can't handle a new line and the attendant indentation
// yet
}
if (codePoint == '\'') {
out << "''";
} else {
WriteCodePoint(out, codePoint);
}
}
out << "'";
return true;
}
bool WriteDoubleQuotedString(ostream_wrapper& out, const char* str, std::size_t size,
StringEscaping::value stringEscaping) {
out << "\"";
int codePoint;
for (const char* i = str;
GetNextCodePointAndAdvance(codePoint, i, str + size);) {
switch (codePoint) {
case '\"':
out << "\\\"";
break;
case '\\':
out << "\\\\";
break;
case '\n':
out << "\\n";
break;
case '\t':
out << "\\t";
break;
case '\r':
out << "\\r";
break;
case '\b':
out << "\\b";
break;
case '\f':
out << "\\f";
break;
default:
if (codePoint < 0x20 ||
(codePoint >= 0x80 &&
codePoint <= 0xA0)) { // Control characters and non-breaking space
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else if (codePoint == 0xFEFF) { // Byte order marks (ZWNS) should be
// escaped (YAML 1.2, sec. 5.2)
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else if (stringEscaping == StringEscaping::NonAscii && codePoint > 0x7E) {
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else {
WriteCodePoint(out, codePoint);
}
}
}
out << "\"";
return true;
}
bool WriteLiteralString(ostream_wrapper& out, const char* str, std::size_t size,
std::size_t indent) {
out << "|\n";
int codePoint;
for (const char* i = str;
GetNextCodePointAndAdvance(codePoint, i, str + size);) {
if (codePoint == '\n') {
out << "\n";
} else {
out<< IndentTo(indent);
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteChar(ostream_wrapper& out, char ch, StringEscaping::value stringEscapingStyle) {
if (('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z')) {
out << ch;
} else if (ch == '\"') {
out << R"("\"")";
} else if (ch == '\t') {
out << R"("\t")";
} else if (ch == '\n') {
out << R"("\n")";
} else if (ch == '\b') {
out << R"("\b")";
} else if (ch == '\r') {
out << R"("\r")";
} else if (ch == '\f') {
out << R"("\f")";
} else if (ch == '\\') {
out << R"("\\")";
} else if (0x20 <= ch && ch <= 0x7e) {
out << "\"" << ch << "\"";
} else {
out << "\"";
WriteDoubleQuoteEscapeSequence(out, ch, stringEscapingStyle);
out << "\"";
}
return true;
}
bool WriteComment(ostream_wrapper& out, const char* str, std::size_t size,
std::size_t postCommentIndent) {
const std::size_t curIndent = out.col();
out << "#" << Indentation(postCommentIndent);
out.set_comment();
int codePoint;
for (const char* i = str;
GetNextCodePointAndAdvance(codePoint, i, str + size);) {
if (codePoint == '\n') {
out << "\n"
<< IndentTo(curIndent) << "#" << Indentation(postCommentIndent);
out.set_comment();
} else {
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteAlias(ostream_wrapper& out, const char* str, std::size_t size) {
out << "*";
return WriteAliasName(out, str, size);
}
bool WriteAnchor(ostream_wrapper& out, const char* str, std::size_t size) {
out << "&";
return WriteAliasName(out, str, size);
}
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim) {
out << (verbatim ? "!<" : "!");
StringCharSource buffer(str.c_str(), str.size());
const RegEx& reValid = verbatim ? Exp::URI() : Exp::Tag();
while (buffer) {
int n = reValid.Match(buffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << buffer[0];
++buffer;
}
}
if (verbatim) {
out << ">";
}
return true;
}
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag) {
out << "!";
StringCharSource prefixBuffer(prefix.c_str(), prefix.size());
while (prefixBuffer) {
int n = Exp::URI().Match(prefixBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << prefixBuffer[0];
++prefixBuffer;
}
}
out << "!";
StringCharSource tagBuffer(tag.c_str(), tag.size());
while (tagBuffer) {
int n = Exp::Tag().Match(tagBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << tagBuffer[0];
++tagBuffer;
}
}
return true;
}
bool WriteBinary(ostream_wrapper& out, const Binary& binary) {
std::string encoded = EncodeBase64(binary.data(), binary.size());
WriteDoubleQuotedString(out, encoded.data(), encoded.size(),
StringEscaping::None);
return true;
}
} // namespace Utils
} // namespace YAML

View File

@ -1,55 +1,32 @@
#ifndef EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/ostream.h"
#include <string>
#include "emitterstate.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/ostream_wrapper.h"
namespace YAML {
class ostream_wrapper;
} // namespace YAML
namespace YAML {
class Binary;
struct StringFormat {
enum value { Plain, SingleQuoted, DoubleQuoted, Literal };
};
struct StringEscaping {
enum value { None, NonAscii, JSON };
};
namespace Utils {
StringFormat::value ComputeStringFormat(const char* str, std::size_t size,
EMITTER_MANIP strFormat,
FlowType::value flowType,
bool escapeNonAscii);
bool WriteSingleQuotedString(ostream_wrapper& out, const char* str, std::size_t size);
bool WriteDoubleQuotedString(ostream_wrapper& out, const char* str, std::size_t size,
StringEscaping::value stringEscaping);
bool WriteLiteralString(ostream_wrapper& out, const char* str, std::size_t size,
std::size_t indent);
bool WriteChar(ostream_wrapper& out, char ch,
StringEscaping::value stringEscapingStyle);
bool WriteComment(ostream_wrapper& out, const char* str, std::size_t size,
std::size_t postCommentIndent);
bool WriteAlias(ostream_wrapper& out, const char* str, std::size_t size);
bool WriteAnchor(ostream_wrapper& out, const char* str, std::size_t size);
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim);
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag);
bool WriteBinary(ostream_wrapper& out, const Binary& binary);
}
namespace YAML
{
class Binary;
namespace Utils
{
bool WriteString(ostream& out, const std::string& str, bool inFlow, bool escapeNonAscii);
bool WriteSingleQuotedString(ostream& out, const std::string& str);
bool WriteDoubleQuotedString(ostream& out, const std::string& str, bool escapeNonAscii);
bool WriteLiteralString(ostream& out, const std::string& str, int indent);
bool WriteChar(ostream& out, char ch);
bool WriteComment(ostream& out, const std::string& str, int postCommentIndent);
bool WriteAlias(ostream& out, const std::string& str);
bool WriteAnchor(ostream& out, const std::string& str);
bool WriteTag(ostream& out, const std::string& str, bool verbatim);
bool WriteTagWithPrefix(ostream& out, const std::string& prefix, const std::string& tag);
bool WriteBinary(ostream& out, const Binary& binary);
}
}
#endif // EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,20 +0,0 @@
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/noexcept.h"
namespace YAML {
// These destructors are defined out-of-line so the vtable is only emitted once.
Exception::~Exception() YAML_CPP_NOEXCEPT = default;
ParserException::~ParserException() YAML_CPP_NOEXCEPT = default;
RepresentationException::~RepresentationException() YAML_CPP_NOEXCEPT = default;
InvalidScalar::~InvalidScalar() YAML_CPP_NOEXCEPT = default;
KeyNotFound::~KeyNotFound() YAML_CPP_NOEXCEPT = default;
InvalidNode::~InvalidNode() YAML_CPP_NOEXCEPT = default;
BadConversion::~BadConversion() YAML_CPP_NOEXCEPT = default;
BadDereference::~BadDereference() YAML_CPP_NOEXCEPT = default;
BadSubscript::~BadSubscript() YAML_CPP_NOEXCEPT = default;
BadPushback::~BadPushback() YAML_CPP_NOEXCEPT = default;
BadInsert::~BadInsert() YAML_CPP_NOEXCEPT = default;
EmitterException::~EmitterException() YAML_CPP_NOEXCEPT = default;
BadFile::~BadFile() YAML_CPP_NOEXCEPT = default;
} // namespace YAML

View File

@ -1,137 +1,113 @@
#include "exp.h"
#include "yaml-cpp/exceptions.h"
#include <sstream>
#include "exp.h"
#include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML
{
namespace Exp
{
unsigned ParseHex(const std::string& str, const Mark& mark)
{
unsigned value = 0;
for(std::size_t i=0;i<str.size();i++) {
char ch = str[i];
int digit = 0;
if('a' <= ch && ch <= 'f')
digit = ch - 'a' + 10;
else if('A' <= ch && ch <= 'F')
digit = ch - 'A' + 10;
else if('0' <= ch && ch <= '9')
digit = ch - '0';
else
throw ParserException(mark, ErrorMsg::INVALID_HEX);
namespace YAML {
struct Mark;
} // namespace YAML
value = (value << 4) + digit;
}
namespace YAML {
namespace Exp {
unsigned ParseHex(const std::string& str, const Mark& mark) {
unsigned value = 0;
for (char ch : str) {
int digit = 0;
if ('a' <= ch && ch <= 'f')
digit = ch - 'a' + 10;
else if ('A' <= ch && ch <= 'F')
digit = ch - 'A' + 10;
else if ('0' <= ch && ch <= '9')
digit = ch - '0';
else
throw ParserException(mark, ErrorMsg::INVALID_HEX);
return value;
}
value = (value << 4) + digit;
}
std::string Str(unsigned ch)
{
return std::string(1, static_cast<char>(ch));
}
return value;
// Escape
// . Translates the next 'codeLength' characters into a hex number and returns the result.
// . Throws if it's not actually hex.
std::string Escape(Stream& in, int codeLength)
{
// grab string
std::string str;
for(int i=0;i<codeLength;i++)
str += in.get();
// get the value
unsigned value = ParseHex(str, in.mark());
// legal unicode?
if((value >= 0xD800 && value <= 0xDFFF) || value > 0x10FFFF) {
std::stringstream msg;
msg << ErrorMsg::INVALID_UNICODE << value;
throw ParserException(in.mark(), msg.str());
}
// now break it up into chars
if(value <= 0x7F)
return Str(value);
else if(value <= 0x7FF)
return Str(0xC0 + (value >> 6)) + Str(0x80 + (value & 0x3F));
else if(value <= 0xFFFF)
return Str(0xE0 + (value >> 12)) + Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F));
else
return Str(0xF0 + (value >> 18)) + Str(0x80 + ((value >> 12) & 0x3F)) +
Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F));
}
// Escape
// . Escapes the sequence starting 'in' (it must begin with a '\' or single quote)
// and returns the result.
// . Throws if it's an unknown escape character.
std::string Escape(Stream& in)
{
// eat slash
char escape = in.get();
// switch on escape character
char ch = in.get();
// first do single quote, since it's easier
if(escape == '\'' && ch == '\'')
return "\'";
// now do the slash (we're not gonna check if it's a slash - you better pass one!)
switch(ch) {
case '0': return std::string(1, '\x00');
case 'a': return "\x07";
case 'b': return "\x08";
case 't':
case '\t': return "\x09";
case 'n': return "\x0A";
case 'v': return "\x0B";
case 'f': return "\x0C";
case 'r': return "\x0D";
case 'e': return "\x1B";
case ' ': return "\x20";
case '\"': return "\"";
case '\'': return "\'";
case '\\': return "\\";
case '/': return "/";
case 'N': return "\x85";
case '_': return "\xA0";
case 'L': return "\xE2\x80\xA8"; // LS (#x2028)
case 'P': return "\xE2\x80\xA9"; // PS (#x2029)
case 'x': return Escape(in, 2);
case 'u': return Escape(in, 4);
case 'U': return Escape(in, 8);
}
std::stringstream msg;
throw ParserException(in.mark(), std::string(ErrorMsg::INVALID_ESCAPE) + ch);
}
}
}
std::string Str(unsigned ch) { return std::string(1, static_cast<char>(ch)); }
// Escape
// . Translates the next 'codeLength' characters into a hex number and returns
// the result.
// . Throws if it's not actually hex.
std::string Escape(Stream& in, int codeLength) {
// grab string
std::string str;
for (int i = 0; i < codeLength; i++)
str += in.get();
// get the value
unsigned value = ParseHex(str, in.mark());
// legal unicode?
if ((value >= 0xD800 && value <= 0xDFFF) || value > 0x10FFFF) {
std::stringstream msg;
msg << ErrorMsg::INVALID_UNICODE << value;
throw ParserException(in.mark(), msg.str());
}
// now break it up into chars
if (value <= 0x7F)
return Str(value);
if (value <= 0x7FF)
return Str(0xC0 + (value >> 6)) + Str(0x80 + (value & 0x3F));
if (value <= 0xFFFF)
return Str(0xE0 + (value >> 12)) + Str(0x80 + ((value >> 6) & 0x3F)) +
Str(0x80 + (value & 0x3F));
return Str(0xF0 + (value >> 18)) + Str(0x80 + ((value >> 12) & 0x3F)) +
Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F));
}
// Escape
// . Escapes the sequence starting 'in' (it must begin with a '\' or single
// quote)
// and returns the result.
// . Throws if it's an unknown escape character.
std::string Escape(Stream& in) {
// eat slash
char escape = in.get();
// switch on escape character
char ch = in.get();
// first do single quote, since it's easier
if (escape == '\'' && ch == '\'')
return "\'";
// now do the slash (we're not gonna check if it's a slash - you better pass
// one!)
switch (ch) {
case '0':
return std::string(1, '\x00');
case 'a':
return "\x07";
case 'b':
return "\x08";
case 't':
case '\t':
return "\x09";
case 'n':
return "\x0A";
case 'v':
return "\x0B";
case 'f':
return "\x0C";
case 'r':
return "\x0D";
case 'e':
return "\x1B";
case ' ':
return R"( )";
case '\"':
return "\"";
case '\'':
return "\'";
case '\\':
return "\\";
case '/':
return "/";
case 'N':
return "\x85";
case '_':
return "\xA0";
case 'L':
return "\xE2\x80\xA8"; // LS (#x2028)
case 'P':
return "\xE2\x80\xA9"; // PS (#x2029)
case 'x':
return Escape(in, 2);
case 'u':
return Escape(in, 4);
case 'U':
return Escape(in, 8);
}
std::stringstream msg;
throw ParserException(in.mark(), std::string(ErrorMsg::INVALID_ESCAPE) + ch);
}
} // namespace Exp
} // namespace YAML

398
src/exp.h
View File

@ -1,226 +1,196 @@
#ifndef EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <ios>
#include <string>
#include "regex_yaml.h"
#include "regex.h"
#include <string>
#include <ios>
#include "stream.h"
namespace YAML {
////////////////////////////////////////////////////////////////////////////////
// Here we store a bunch of expressions for matching different parts of the
// file.
namespace YAML
{
////////////////////////////////////////////////////////////////////////////////
// Here we store a bunch of expressions for matching different parts of the file.
namespace Exp {
// misc
inline const RegEx& Empty() {
static const RegEx e;
return e;
}
inline const RegEx& Space() {
static const RegEx e = RegEx(' ');
return e;
}
inline const RegEx& Tab() {
static const RegEx e = RegEx('\t');
return e;
}
inline const RegEx& Blank() {
static const RegEx e = Space() | Tab();
return e;
}
inline const RegEx& Break() {
static const RegEx e = RegEx('\n') | RegEx("\r\n") | RegEx('\r');
return e;
}
inline const RegEx& BlankOrBreak() {
static const RegEx e = Blank() | Break();
return e;
}
inline const RegEx& Digit() {
static const RegEx e = RegEx('0', '9');
return e;
}
inline const RegEx& Alpha() {
static const RegEx e = RegEx('a', 'z') | RegEx('A', 'Z');
return e;
}
inline const RegEx& AlphaNumeric() {
static const RegEx e = Alpha() | Digit();
return e;
}
inline const RegEx& Word() {
static const RegEx e = AlphaNumeric() | RegEx('-');
return e;
}
inline const RegEx& Hex() {
static const RegEx e = Digit() | RegEx('A', 'F') | RegEx('a', 'f');
return e;
}
// Valid Unicode code points that are not part of c-printable (YAML 1.2, sec.
// 5.1)
inline const RegEx& NotPrintable() {
static const RegEx e =
RegEx(0) |
RegEx("\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x7F", REGEX_OR) |
RegEx(0x0E, 0x1F) |
(RegEx('\xC2') + (RegEx('\x80', '\x84') | RegEx('\x86', '\x9F')));
return e;
}
inline const RegEx& Utf8_ByteOrderMark() {
static const RegEx e = RegEx("\xEF\xBB\xBF");
return e;
namespace Exp
{
// misc
inline const RegEx& Space() {
static const RegEx e = RegEx(' ');
return e;
}
inline const RegEx& Tab() {
static const RegEx e = RegEx('\t');
return e;
}
inline const RegEx& Blank() {
static const RegEx e = Space() || Tab();
return e;
}
inline const RegEx& Break() {
static const RegEx e = RegEx('\n') || RegEx("\r\n");
return e;
}
inline const RegEx& BlankOrBreak() {
static const RegEx e = Blank() || Break();
return e;
}
inline const RegEx& Digit() {
static const RegEx e = RegEx('0', '9');
return e;
}
inline const RegEx& Alpha() {
static const RegEx e = RegEx('a', 'z') || RegEx('A', 'Z');
return e;
}
inline const RegEx& AlphaNumeric() {
static const RegEx e = Alpha() || Digit();
return e;
}
inline const RegEx& Word() {
static const RegEx e = AlphaNumeric() || RegEx('-');
return e;
}
inline const RegEx& Hex() {
static const RegEx e = Digit() || RegEx('A', 'F') || RegEx('a', 'f');
return e;
}
// Valid Unicode code points that are not part of c-printable (YAML 1.2, sec. 5.1)
inline const RegEx& NotPrintable() {
static const RegEx e = RegEx(0) ||
RegEx("\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x7F", REGEX_OR) ||
RegEx(0x0E, 0x1F) ||
(RegEx('\xC2') + (RegEx('\x80', '\x84') || RegEx('\x86', '\x9F')));
return e;
}
inline const RegEx& Utf8_ByteOrderMark() {
static const RegEx e = RegEx("\xEF\xBB\xBF");
return e;
}
// actual tags
inline const RegEx& DocStart() {
static const RegEx e = RegEx("---") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocEnd() {
static const RegEx e = RegEx("...") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocIndicator() {
static const RegEx e = DocStart() || DocEnd();
return e;
}
inline const RegEx& BlockEntry() {
static const RegEx e = RegEx('-') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& Key() {
static const RegEx e = RegEx('?');
return e;
}
inline const RegEx& KeyInFlow() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& Value() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& ValueInFlow() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx(",}", REGEX_OR));
return e;
}
inline const RegEx& ValueInJSONFlow() {
static const RegEx e = RegEx(':');
return e;
}
inline const RegEx Comment() {
static const RegEx e = RegEx('#');
return e;
}
inline const RegEx& Anchor() {
static const RegEx e = !(RegEx("[]{},", REGEX_OR) || BlankOrBreak());
return e;
}
inline const RegEx& AnchorEnd() {
static const RegEx e = RegEx("?:,]}%@`", REGEX_OR) || BlankOrBreak();
return e;
}
inline const RegEx& URI() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$,_.!~*'()[]", REGEX_OR) || (RegEx('%') + Hex() + Hex());
return e;
}
inline const RegEx& Tag() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$_.~*'", REGEX_OR) || (RegEx('%') + Hex() + Hex());
return e;
}
// Plain scalar rules:
// . Cannot start with a blank.
// . Can never start with any of , [ ] { } # & * ! | > \' \" % @ `
// . In the block context - ? : must be not be followed with a space.
// . In the flow context ? is illegal and : and - must not be followed with a space.
inline const RegEx& PlainScalar() {
static const RegEx e = !(BlankOrBreak() || RegEx(",[]{}#&*!|>\'\"%@`", REGEX_OR) || (RegEx("-?:", REGEX_OR) + (BlankOrBreak() || RegEx())));
return e;
}
inline const RegEx& PlainScalarInFlow() {
static const RegEx e = !(BlankOrBreak() || RegEx("?,[]{}#&*!|>\'\"%@`", REGEX_OR) || (RegEx("-:", REGEX_OR) + Blank()));
return e;
}
inline const RegEx& EndScalar() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& EndScalarInFlow() {
static const RegEx e = (RegEx(':') + (BlankOrBreak() || RegEx() || RegEx(",]}", REGEX_OR))) || RegEx(",?[]{}", REGEX_OR);
return e;
}
inline const RegEx& EscSingleQuote() {
static const RegEx e = RegEx("\'\'");
return e;
}
inline const RegEx& EscBreak() {
static const RegEx e = RegEx('\\') + Break();
return e;
}
inline const RegEx& ChompIndicator() {
static const RegEx e = RegEx("+-", REGEX_OR);
return e;
}
inline const RegEx& Chomp() {
static const RegEx e = (ChompIndicator() + Digit()) || (Digit() + ChompIndicator()) || ChompIndicator() || Digit();
return e;
}
// and some functions
std::string Escape(Stream& in);
}
namespace Keys
{
const char Directive = '%';
const char FlowSeqStart = '[';
const char FlowSeqEnd = ']';
const char FlowMapStart = '{';
const char FlowMapEnd = '}';
const char FlowEntry = ',';
const char Alias = '*';
const char Anchor = '&';
const char Tag = '!';
const char LiteralScalar = '|';
const char FoldedScalar = '>';
const char VerbatimTagStart = '<';
const char VerbatimTagEnd = '>';
}
}
// actual tags
inline const RegEx& DocStart() {
static const RegEx e = RegEx("---") + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& DocEnd() {
static const RegEx e = RegEx("...") + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& DocIndicator() {
static const RegEx e = DocStart() | DocEnd();
return e;
}
inline const RegEx& BlockEntry() {
static const RegEx e = RegEx('-') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& Key() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& KeyInFlow() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& Value() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& ValueInFlow() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx(",]}", REGEX_OR));
return e;
}
inline const RegEx& ValueInJSONFlow() {
static const RegEx e = RegEx(':');
return e;
}
inline const RegEx& Ampersand() {
static const RegEx e = RegEx('&');
return e;
}
inline const RegEx Comment() {
static const RegEx e = RegEx('#');
return e;
}
inline const RegEx& Anchor() {
static const RegEx e = !(RegEx("[]{},", REGEX_OR) | BlankOrBreak());
return e;
}
inline const RegEx& AnchorEnd() {
static const RegEx e = RegEx("?:,]}%@`", REGEX_OR) | BlankOrBreak();
return e;
}
inline const RegEx& URI() {
static const RegEx e = Word() | RegEx("#;/?:@&=+$,_.!~*'()[]", REGEX_OR) |
(RegEx('%') + Hex() + Hex());
return e;
}
inline const RegEx& Tag() {
static const RegEx e = Word() | RegEx("#;/?:@&=+$_.~*'()", REGEX_OR) |
(RegEx('%') + Hex() + Hex());
return e;
}
// Plain scalar rules:
// . Cannot start with a blank.
// . Can never start with any of , [ ] { } # & * ! | > \' \" % @ `
// . In the block context - ? : must be not be followed with a space.
// . In the flow context ? is illegal and : and - must not be followed with a
// space.
inline const RegEx& PlainScalar() {
static const RegEx e =
!(BlankOrBreak() | RegEx(",[]{}#&*!|>\'\"%@`", REGEX_OR) |
(RegEx("-?:", REGEX_OR) + (BlankOrBreak() | RegEx())));
return e;
}
inline const RegEx& PlainScalarInFlow() {
static const RegEx e =
!(BlankOrBreak() | RegEx("?,[]{}#&*!|>\'\"%@`", REGEX_OR) |
(RegEx("-:", REGEX_OR) + (Blank() | RegEx())));
return e;
}
inline const RegEx& EndScalar() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& EndScalarInFlow() {
static const RegEx e =
(RegEx(':') + (BlankOrBreak() | RegEx() | RegEx(",]}", REGEX_OR))) |
RegEx(",?[]{}", REGEX_OR);
return e;
}
inline const RegEx& ScanScalarEndInFlow() {
static const RegEx e = (EndScalarInFlow() | (BlankOrBreak() + Comment()));
return e;
}
inline const RegEx& ScanScalarEnd() {
static const RegEx e = EndScalar() | (BlankOrBreak() + Comment());
return e;
}
inline const RegEx& EscSingleQuote() {
static const RegEx e = RegEx("\'\'");
return e;
}
inline const RegEx& EscBreak() {
static const RegEx e = RegEx('\\') + Break();
return e;
}
inline const RegEx& ChompIndicator() {
static const RegEx e = RegEx("+-", REGEX_OR);
return e;
}
inline const RegEx& Chomp() {
static const RegEx e = (ChompIndicator() + Digit()) |
(Digit() + ChompIndicator()) | ChompIndicator() |
Digit();
return e;
}
// and some functions
std::string Escape(Stream& in);
} // namespace Exp
namespace Keys {
const char Directive = '%';
const char FlowSeqStart = '[';
const char FlowSeqEnd = ']';
const char FlowMapStart = '{';
const char FlowMapEnd = '}';
const char FlowEntry = ',';
const char Alias = '*';
const char Anchor = '&';
const char Tag = '!';
const char LiteralScalar = '|';
const char FoldedScalar = '>';
const char VerbatimTagStart = '<';
const char VerbatimTagEnd = '>';
} // namespace Keys
} // namespace YAML
#endif // EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,238 +0,0 @@
#include "yaml-cpp/fptostring.h"
#include "contrib/dragonbox.h"
#include <array>
#include <cassert>
#include <cmath>
#include <limits>
#include <sstream>
#include <tuple>
namespace YAML {
namespace detail {
namespace fp_formatting {
/**
* Converts a integer into its ASCII digits.
*
* @param begin/end - a buffer, must be at least 20bytes long.
* @param value - input value.
* @param width - minimum number of digits, fill with '0' to the left. Must be equal or smaller than the buffer size.
* @return - number of digits filled into the buffer (or -1 if preconditions are not meet)
*
* Example:
* std::array<char, 20> buffer;
* auto ct = ConvertToChars(buffer.begin(), buffer.end(), 23, 3);
* assert(ct = 3);
* assert(buffer[0] == '0');
* assert(buffer[1] == '2');
* assert(buffer[2] == '3');
*/
int ConvertToChars(char* begin, char* end, size_t value, int width=1) {
// precondition of this function (will trigger in debug build)
assert(width >= 1);
assert(end >= begin); // end must be after begin
assert(end-begin >= width); // Buffer must be large enough
assert(end-begin >= 20); // 2^64 has 20digits, so at least 20 digits must be available
// defensive programming, abort if precondition are not met (will trigger in release build)
if (width < 1) {
return -1;
}
if (end < begin) {
return -1;
}
if (end-begin < width) {
return -1;
}
if (end-begin < 20) {
return -1;
}
// count number of digits, and fill digits array accordingly
int digits_ct{};
while (value > 0) {
char c = value % 10 + '0';
value = value / 10;
digits_ct += 1;
*(end-digits_ct) = c;
}
while(digits_ct < width) {
assert(digits_ct < 64);
digits_ct += 1;
*(end-digits_ct) = '0';
}
// move data to the front of the array
std::memmove(begin, end-digits_ct, digits_ct);
return digits_ct;
}
/**
* Converts a float or double to a string.
*
* converts a value 'v' to a string. Uses dragonbox for formatting.
*/
template <typename T>
std::string FpToString(T v, int precision = 0) {
// hard coded constant, at which exponent should switch to a scientific notation
int const lowerExponentThreshold = -5;
int const upperExponentThreshold = (precision==0)?6:precision;
if (precision == 0) {
precision = 6;
}
// dragonbox/to_decimal does not handle value 0, inf, NaN
if (v == 0 || std::isinf(v) || std::isnan(v)) {
std::stringstream ss;
ss.imbue(std::locale("C"));
ss << v;
return ss.str();
}
auto r = jkj::dragonbox::to_decimal(v);
auto digits = std::array<char, 20>{}; // max digits of size_t is 20.
auto digits_ct = ConvertToChars(digits.data(), digits.data() + digits.size(), r.significand);
// defensive programming, ConvertToChars arguments are invalid
if (digits_ct == -1) {
std::stringstream ss;
ss.imbue(std::locale("C"));
ss << v;
return ss.str();
}
// check if requested precision is lower than
// required digits for exact representation
if (digits_ct > precision) {
auto diff = digits_ct - precision;
r.exponent += diff;
digits_ct = precision;
// round numbers if required
if (digits[digits_ct] >= '5') {
int i{digits_ct-1};
digits[i] += 1;
while (digits[i] == '9'+1) {
digits_ct -= 1;
r.exponent += 1;
if (i > 0) {
digits[i-1] += 1;
i -= 1;
} else {
digits_ct = 1;
digits[0] = '1';
break;
}
}
}
}
std::array<char, 28> output_buffer; // max digits of size_t plus sign, a dot and 2 letters for 'e+' or 'e-' and 4 letters for the exponent
auto output_ptr = &output_buffer[0];
// print '-' symbol for negative numbers
if (r.is_negative) {
*(output_ptr++) = '-';
}
// exponent if only a single non-zero digit is before the decimal point
int const exponent = r.exponent + digits_ct - 1;
// case 1: scientific notation
if (exponent >= upperExponentThreshold || exponent <= lowerExponentThreshold) {
// print first digit
*(output_ptr++) = digits[0];
// print digits after decimal point
if (digits_ct > 1) {
*(output_ptr++) = '.';
// print significant numbers after decimal point
for (int i{1}; i < digits_ct; ++i) {
*(output_ptr++) = digits[i];
}
}
*(output_ptr++) = 'e';
*(output_ptr++) = (exponent>=0)?'+':'-';
auto exp_digits = std::array<char, 20>{};
auto exp_digits_ct = ConvertToChars(exp_digits.data(), exp_digits.data() + exp_digits.size(), std::abs(exponent), /*.precision=*/ 2);
// defensive programming, ConvertToChars arguments are invalid
if (exp_digits_ct == -1) {
std::stringstream ss;
ss.imbue(std::locale("C"));
ss << v;
return ss.str();
}
for (int i{0}; i < exp_digits_ct; ++i) {
*(output_ptr++) = exp_digits[i];
}
// case 2: default notation
} else {
auto const digits_end = digits.begin() + digits_ct;
auto digits_iter = digits.begin();
// print digits before point
int const before_decimal_digits = digits_ct + r.exponent;
if (before_decimal_digits > 0) {
// print digits before point
for (int i{0}; i < std::min(before_decimal_digits, digits_ct); ++i) {
*(output_ptr++) = *(digits_iter++);
}
// print trailing zeros before point
for (int i{0}; i < before_decimal_digits - digits_ct; ++i) {
*(output_ptr++) = '0';
}
// print 0 before point if none where printed before
} else {
*(output_ptr++) = '0';
}
if (digits_iter != digits_end) {
*(output_ptr++) = '.';
// print 0 after decimal point, to fill until first digits
int const after_decimal_zeros = -digits_ct - r.exponent;
for (int i{0}; i < after_decimal_zeros; ++i) {
*(output_ptr++) = '0';
}
// print significant numbers after decimal point
for (;digits_iter < digits_end; ++digits_iter) {
*(output_ptr++) = *digits_iter;
}
}
}
*output_ptr = '\0';
return std::string{&output_buffer[0], output_ptr};
}
}
}
std::string FpToString(float v, size_t precision) {
return detail::fp_formatting::FpToString(v, precision);
}
std::string FpToString(double v, size_t precision) {
return detail::fp_formatting::FpToString(v, precision);
}
/**
* dragonbox only works for floats/doubles not long double
*/
std::string FpToString(long double v, size_t precision) {
std::stringstream ss;
ss.imbue(std::locale("C"));
if (precision == 0) {
precision = std::numeric_limits<long double>::max_digits10;
}
ss.precision(precision);
ss << v;
return ss.str();
}
}

View File

@ -1,40 +1,38 @@
#ifndef INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
#include "yaml-cpp/ostream_wrapper.h"
#include "yaml-cpp/ostream.h"
#include <iostream>
namespace YAML {
struct Indentation {
Indentation(std::size_t n_) : n(n_) {}
std::size_t n;
};
namespace YAML
{
struct Indentation {
Indentation(unsigned n_): n(n_) {}
unsigned n;
};
inline ostream& operator << (ostream& out, const Indentation& indent) {
for(unsigned i=0;i<indent.n;i++)
out << ' ';
return out;
}
inline ostream_wrapper& operator<<(ostream_wrapper& out,
const Indentation& indent) {
for (std::size_t i = 0; i < indent.n; i++)
out << ' ';
return out;
struct IndentTo {
IndentTo(unsigned n_): n(n_) {}
unsigned n;
};
inline ostream& operator << (ostream& out, const IndentTo& indent) {
while(out.col() < indent.n)
out << ' ';
return out;
}
}
struct IndentTo {
IndentTo(std::size_t n_) : n(n_) {}
std::size_t n;
};
inline ostream_wrapper& operator<<(ostream_wrapper& out,
const IndentTo& indent) {
while (out.col() < indent.n)
out << ' ';
return out;
}
}
#endif // INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#endif // INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,26 +1,29 @@
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node.h"
namespace YAML {
namespace detail {
void memory_holder::merge(memory_holder& rhs) {
if (m_pMemory == rhs.m_pMemory)
return;
m_pMemory->merge(*rhs.m_pMemory);
rhs.m_pMemory = m_pMemory;
namespace YAML
{
namespace detail
{
void memory_holder::merge(memory_holder& rhs)
{
if(m_pMemory == rhs.m_pMemory)
return;
m_pMemory->merge(*rhs.m_pMemory);
rhs.m_pMemory = m_pMemory;
}
node& memory::create_node()
{
shared_node pNode(new node);
m_nodes.insert(pNode);
return *pNode;
}
void memory::merge(const memory& rhs)
{
m_nodes.insert(rhs.m_nodes.begin(), rhs.m_nodes.end());
}
}
}
node& memory::create_node() {
shared_node pNode(new node);
m_nodes.insert(pNode);
return *pNode;
}
void memory::merge(const memory& rhs) {
m_nodes.insert(rhs.m_nodes.begin(), rhs.m_nodes.end());
}
} // namespace detail
} // namespace YAML

View File

@ -1,12 +0,0 @@
#include "yaml-cpp/node/node.h"
#include "nodebuilder.h"
#include "nodeevents.h"
namespace YAML {
Node Clone(const Node& node) {
NodeEvents events(node);
NodeBuilder builder;
events.Emit(builder);
return builder.Root();
}
} // namespace YAML

View File

@ -1,325 +1,295 @@
#include <algorithm>
#include <cassert>
#include <iterator>
#include "yaml-cpp/node/detail/node_data.h"
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/exceptions.h"
#include <sstream>
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
#include "yaml-cpp/node/detail/node_data.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
namespace YAML
{
namespace detail
{
std::string node_data::empty_scalar;
namespace YAML {
namespace detail {
YAML_CPP_API std::atomic<size_t> node::m_amount{0};
node_data::node_data(): m_isDefined(false), m_type(NodeType::Null), m_seqSize(0)
{
}
const std::string& node_data::empty_scalar() {
static const std::string svalue;
return svalue;
void node_data::mark_defined()
{
if(m_type == NodeType::Undefined)
m_type = NodeType::Null;
m_isDefined = true;
}
void node_data::set_type(NodeType::value type)
{
if(type == NodeType::Undefined) {
m_type = type;
m_isDefined = false;
return;
}
m_isDefined = true;
if(type == m_type)
return;
m_type = type;
switch(m_type) {
case NodeType::Null:
break;
case NodeType::Scalar:
m_scalar.clear();
break;
case NodeType::Sequence:
reset_sequence();
break;
case NodeType::Map:
reset_map();
break;
case NodeType::Undefined:
assert(false);
break;
}
}
void node_data::set_tag(const std::string& tag)
{
m_tag = tag;
}
void node_data::set_null()
{
m_isDefined = true;
m_type = NodeType::Null;
}
void node_data::set_scalar(const std::string& scalar)
{
m_isDefined = true;
m_type = NodeType::Scalar;
m_scalar = scalar;
}
// size/iterator
std::size_t node_data::size() const
{
if(!m_isDefined)
return 0;
switch(m_type) {
case NodeType::Sequence: compute_seq_size(); return m_seqSize;
case NodeType::Map: compute_map_size(); return m_map.size() - m_undefinedPairs.size();
default:
return 0;
}
return 0;
}
void node_data::compute_seq_size() const
{
while(m_seqSize < m_sequence.size() && m_sequence[m_seqSize]->is_defined())
m_seqSize++;
}
void node_data::compute_map_size() const
{
kv_pairs::iterator it = m_undefinedPairs.begin();
while(it != m_undefinedPairs.end()) {
kv_pairs::iterator jt = boost::next(it);
if(it->first->is_defined() && it->second->is_defined())
m_undefinedPairs.erase(it);
it = jt;
}
}
const_node_iterator node_data::begin() const
{
if(!m_isDefined)
return const_node_iterator();
switch(m_type) {
case NodeType::Sequence: return const_node_iterator(m_sequence.begin());
case NodeType::Map: return const_node_iterator(m_map.begin(), m_map.end());
default: return const_node_iterator();
}
}
node_iterator node_data::begin()
{
if(!m_isDefined)
return node_iterator();
switch(m_type) {
case NodeType::Sequence: return node_iterator(m_sequence.begin());
case NodeType::Map: return node_iterator(m_map.begin(), m_map.end());
default: return node_iterator();
}
}
const_node_iterator node_data::end() const
{
if(!m_isDefined)
return const_node_iterator();
switch(m_type) {
case NodeType::Sequence: return const_node_iterator(m_sequence.end());
case NodeType::Map: return const_node_iterator(m_map.end(), m_map.end());
default: return const_node_iterator();
}
}
node_iterator node_data::end()
{
if(!m_isDefined)
return node_iterator();
switch(m_type) {
case NodeType::Sequence: return node_iterator(m_sequence.end());
case NodeType::Map: return node_iterator(m_map.end(), m_map.end());
default: return node_iterator();
}
}
// sequence
void node_data::push_back(node& node, shared_memory_holder /* pMemory */)
{
if(m_type == NodeType::Undefined || m_type == NodeType::Null) {
m_type = NodeType::Sequence;
reset_sequence();
}
if(m_type != NodeType::Sequence)
throw BadPushback();
m_sequence.push_back(&node);
}
void node_data::insert(node& key, node& value, shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript();
}
insert_map_pair(key, value);
}
// indexing
node& node_data::get(node& key, shared_memory_holder pMemory) const
{
if(m_type != NodeType::Map)
return pMemory->create_node();
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(it->first->is(key))
return *it->second;
}
return pMemory->create_node();
}
node& node_data::get(node& key, shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript();
}
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(it->first->is(key))
return *it->second;
}
node& value = pMemory->create_node();
insert_map_pair(key, value);
return value;
}
bool node_data::remove(node& key, shared_memory_holder /* pMemory */)
{
if(m_type != NodeType::Map)
return false;
for(node_map::iterator it=m_map.begin();it!=m_map.end();++it) {
if(it->first->is(key)) {
m_map.erase(it);
return true;
}
}
return false;
}
void node_data::reset_sequence()
{
m_sequence.clear();
m_seqSize = 0;
}
void node_data::reset_map()
{
m_map.clear();
m_undefinedPairs.clear();
}
void node_data::insert_map_pair(node& key, node& value)
{
m_map[&key] = &value;
if(!key.is_defined() || !value.is_defined())
m_undefinedPairs.push_back(kv_pair(&key, &value));
}
void node_data::convert_to_map(shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Undefined:
case NodeType::Null:
reset_map();
m_type = NodeType::Map;
break;
case NodeType::Sequence:
convert_sequence_to_map(pMemory);
break;
case NodeType::Map:
break;
case NodeType::Scalar:
assert(false);
break;
}
}
void node_data::convert_sequence_to_map(shared_memory_holder pMemory)
{
assert(m_type == NodeType::Sequence);
reset_map();
for(std::size_t i=0;i<m_sequence.size();i++) {
std::stringstream stream;
stream << i;
node& key = pMemory->create_node();
key.set_scalar(stream.str());
insert_map_pair(key, *m_sequence[i]);
}
reset_sequence();
m_type = NodeType::Map;
}
}
}
node_data::node_data()
: m_isDefined(false),
m_mark(Mark::null_mark()),
m_type(NodeType::Null),
m_tag{},
m_style(EmitterStyle::Default),
m_scalar{},
m_sequence{},
m_seqSize(0),
m_map{},
m_undefinedPairs{} {}
void node_data::mark_defined() {
if (m_type == NodeType::Undefined)
m_type = NodeType::Null;
m_isDefined = true;
}
void node_data::set_mark(const Mark& mark) { m_mark = mark; }
void node_data::set_type(NodeType::value type) {
if (type == NodeType::Undefined) {
m_type = type;
m_isDefined = false;
return;
}
m_isDefined = true;
if (type == m_type)
return;
m_type = type;
switch (m_type) {
case NodeType::Null:
break;
case NodeType::Scalar:
m_scalar.clear();
break;
case NodeType::Sequence:
reset_sequence();
break;
case NodeType::Map:
reset_map();
break;
case NodeType::Undefined:
assert(false);
break;
}
}
void node_data::set_tag(const std::string& tag) { m_tag = tag; }
void node_data::set_style(EmitterStyle::value style) { m_style = style; }
void node_data::set_null() {
m_isDefined = true;
m_type = NodeType::Null;
}
void node_data::set_scalar(const std::string& scalar) {
m_isDefined = true;
m_type = NodeType::Scalar;
m_scalar = scalar;
}
// size/iterator
std::size_t node_data::size() const {
if (!m_isDefined)
return 0;
switch (m_type) {
case NodeType::Sequence:
compute_seq_size();
return m_seqSize;
case NodeType::Map:
compute_map_size();
return m_map.size() - m_undefinedPairs.size();
default:
return 0;
}
return 0;
}
void node_data::compute_seq_size() const {
while (m_seqSize < m_sequence.size() && m_sequence[m_seqSize]->is_defined())
m_seqSize++;
}
void node_data::compute_map_size() const {
auto it = m_undefinedPairs.begin();
while (it != m_undefinedPairs.end()) {
auto jt = std::next(it);
if (it->first->is_defined() && it->second->is_defined())
m_undefinedPairs.erase(it);
it = jt;
}
}
const_node_iterator node_data::begin() const {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return const_node_iterator(m_sequence.begin());
case NodeType::Map:
return const_node_iterator(m_map.begin(), m_map.end());
default:
return {};
}
}
node_iterator node_data::begin() {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return node_iterator(m_sequence.begin());
case NodeType::Map:
return node_iterator(m_map.begin(), m_map.end());
default:
return {};
}
}
const_node_iterator node_data::end() const {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return const_node_iterator(m_sequence.end());
case NodeType::Map:
return const_node_iterator(m_map.end(), m_map.end());
default:
return {};
}
}
node_iterator node_data::end() {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return node_iterator(m_sequence.end());
case NodeType::Map:
return node_iterator(m_map.end(), m_map.end());
default:
return {};
}
}
// sequence
void node_data::push_back(node& node,
const shared_memory_holder& /* pMemory */) {
if (m_type == NodeType::Undefined || m_type == NodeType::Null) {
m_type = NodeType::Sequence;
reset_sequence();
}
if (m_type != NodeType::Sequence)
throw BadPushback();
m_sequence.push_back(&node);
}
void node_data::insert(node& key, node& value,
const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
insert_map_pair(key, value);
}
// indexing
node* node_data::get(node& key,
const shared_memory_holder& /* pMemory */) const {
if (m_type != NodeType::Map) {
return nullptr;
}
for (const auto& it : m_map) {
if (it.first->is(key))
return it.second;
}
return nullptr;
}
node& node_data::get(node& key, const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
for (const auto& it : m_map) {
if (it.first->is(key))
return *it.second;
}
node& value = pMemory->create_node();
insert_map_pair(key, value);
return value;
}
bool node_data::remove(node& key, const shared_memory_holder& /* pMemory */) {
if (m_type != NodeType::Map)
return false;
for (auto it = m_undefinedPairs.begin(); it != m_undefinedPairs.end();) {
auto jt = std::next(it);
if (it->first->is(key))
m_undefinedPairs.erase(it);
it = jt;
}
auto it =
std::find_if(m_map.begin(), m_map.end(),
[&](std::pair<YAML::detail::node*, YAML::detail::node*> j) {
return (j.first->is(key));
});
if (it != m_map.end()) {
m_map.erase(it);
return true;
}
return false;
}
void node_data::reset_sequence() {
m_sequence.clear();
m_seqSize = 0;
}
void node_data::reset_map() {
m_map.clear();
m_undefinedPairs.clear();
}
void node_data::insert_map_pair(node& key, node& value) {
m_map.emplace_back(&key, &value);
if (!key.is_defined() || !value.is_defined())
m_undefinedPairs.emplace_back(&key, &value);
}
void node_data::convert_to_map(const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Undefined:
case NodeType::Null:
reset_map();
m_type = NodeType::Map;
break;
case NodeType::Sequence:
convert_sequence_to_map(pMemory);
break;
case NodeType::Map:
break;
case NodeType::Scalar:
assert(false);
break;
}
}
void node_data::convert_sequence_to_map(const shared_memory_holder& pMemory) {
assert(m_type == NodeType::Sequence);
reset_map();
for (std::size_t i = 0; i < m_sequence.size(); i++) {
std::stringstream stream;
stream.imbue(std::locale("C"));
stream << i;
node& key = pMemory->create_node();
key.set_scalar(stream.str());
insert_map_pair(key, *m_sequence[i]);
}
reset_sequence();
m_type = NodeType::Map;
}
} // namespace detail
} // namespace YAML

View File

@ -1,134 +1,138 @@
#include "nodebuilder.h"
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h"
#include <cassert>
#include "nodebuilder.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
namespace YAML
{
NodeBuilder::NodeBuilder(): m_pMemory(new detail::memory_holder), m_pRoot(0), m_mapDepth(0)
{
m_anchors.push_back(0); // since the anchors start at 1
}
NodeBuilder::~NodeBuilder()
{
}
Node NodeBuilder::Root()
{
if(!m_pRoot)
return Node();
return Node(*m_pRoot, m_pMemory);
}
namespace YAML {
struct Mark;
void NodeBuilder::OnDocumentStart(const Mark&)
{
}
void NodeBuilder::OnDocumentEnd()
{
}
void NodeBuilder::OnNull(const Mark& /* mark */, anchor_t anchor)
{
detail::node& node = Push(anchor);
node.set_null();
Pop();
}
void NodeBuilder::OnAlias(const Mark& /* mark */, anchor_t anchor)
{
detail::node& node = *m_anchors[anchor];
Push(node);
Pop();
}
void NodeBuilder::OnScalar(const Mark& /* mark */, const std::string& tag, anchor_t anchor, const std::string& value)
{
detail::node& node = Push(anchor);
node.set_scalar(value);
node.set_tag(tag);
Pop();
}
void NodeBuilder::OnSequenceStart(const Mark& /* mark */, const std::string& tag, anchor_t anchor)
{
detail::node& node = Push(anchor);
node.set_tag(tag);
node.set_type(NodeType::Sequence);
}
void NodeBuilder::OnSequenceEnd()
{
Pop();
}
void NodeBuilder::OnMapStart(const Mark& /* mark */, const std::string& tag, anchor_t anchor)
{
detail::node& node = Push(anchor);
node.set_type(NodeType::Map);
node.set_tag(tag);
m_mapDepth++;
}
void NodeBuilder::OnMapEnd()
{
assert(m_mapDepth > 0);
m_mapDepth--;
Pop();
}
NodeBuilder::NodeBuilder()
: m_pMemory(new detail::memory_holder),
m_pRoot(nullptr),
m_stack{},
m_anchors{},
m_keys{},
m_mapDepth(0) {
m_anchors.push_back(nullptr); // since the anchors start at 1
detail::node& NodeBuilder::Push(anchor_t anchor)
{
detail::node& node = m_pMemory->create_node();
RegisterAnchor(anchor, node);
Push(node);
return node;
}
void NodeBuilder::Push(detail::node& node)
{
const bool needsKey = (!m_stack.empty() && m_stack.back()->type() == NodeType::Map && m_keys.size() < m_mapDepth);
m_stack.push_back(&node);
if(needsKey)
m_keys.push_back(PushedKey(&node, false));
}
void NodeBuilder::Pop()
{
assert(!m_stack.empty());
if(m_stack.size() == 1) {
m_pRoot = m_stack[0];
m_stack.pop_back();
return;
}
detail::node& node = *m_stack.back();
m_stack.pop_back();
detail::node& collection = *m_stack.back();
if(collection.type() == NodeType::Sequence) {
collection.push_back(node, m_pMemory);
} else if(collection.type() == NodeType::Map) {
assert(!m_keys.empty());
PushedKey& key = m_keys.back();
if(key.second) {
collection.insert(*key.first, node, m_pMemory);
m_keys.pop_back();
} else {
key.second = true;
}
} else {
assert(false);
m_stack.clear();
}
}
void NodeBuilder::RegisterAnchor(anchor_t anchor, detail::node& node)
{
if(anchor) {
assert(anchor == m_anchors.size());
m_anchors.push_back(&node);
}
}
}
NodeBuilder::~NodeBuilder() = default;
Node NodeBuilder::Root() {
if (!m_pRoot)
return Node();
return Node(*m_pRoot, m_pMemory);
}
void NodeBuilder::OnDocumentStart(const Mark&) {}
void NodeBuilder::OnDocumentEnd() {}
void NodeBuilder::OnNull(const Mark& mark, anchor_t anchor) {
detail::node& node = Push(mark, anchor);
node.set_null();
Pop();
}
void NodeBuilder::OnAlias(const Mark& /* mark */, anchor_t anchor) {
detail::node& node = *m_anchors[anchor];
Push(node);
Pop();
}
void NodeBuilder::OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) {
detail::node& node = Push(mark, anchor);
node.set_scalar(value);
node.set_tag(tag);
Pop();
}
void NodeBuilder::OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
detail::node& node = Push(mark, anchor);
node.set_tag(tag);
node.set_type(NodeType::Sequence);
node.set_style(style);
}
void NodeBuilder::OnSequenceEnd() { Pop(); }
void NodeBuilder::OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
detail::node& node = Push(mark, anchor);
node.set_type(NodeType::Map);
node.set_tag(tag);
node.set_style(style);
m_mapDepth++;
}
void NodeBuilder::OnMapEnd() {
assert(m_mapDepth > 0);
m_mapDepth--;
Pop();
}
detail::node& NodeBuilder::Push(const Mark& mark, anchor_t anchor) {
detail::node& node = m_pMemory->create_node();
node.set_mark(mark);
RegisterAnchor(anchor, node);
Push(node);
return node;
}
void NodeBuilder::Push(detail::node& node) {
const bool needsKey =
(!m_stack.empty() && m_stack.back()->type() == NodeType::Map &&
m_keys.size() < m_mapDepth);
m_stack.push_back(&node);
if (needsKey)
m_keys.emplace_back(&node, false);
}
void NodeBuilder::Pop() {
assert(!m_stack.empty());
if (m_stack.size() == 1) {
m_pRoot = m_stack[0];
m_stack.pop_back();
return;
}
detail::node& node = *m_stack.back();
m_stack.pop_back();
detail::node& collection = *m_stack.back();
if (collection.type() == NodeType::Sequence) {
collection.push_back(node, m_pMemory);
} else if (collection.type() == NodeType::Map) {
assert(!m_keys.empty());
PushedKey& key = m_keys.back();
if (key.second) {
collection.insert(*key.first, node, m_pMemory);
m_keys.pop_back();
} else {
key.second = true;
}
} else {
assert(false);
m_stack.clear();
}
}
void NodeBuilder::RegisterAnchor(anchor_t anchor, detail::node& node) {
if (anchor) {
assert(anchor == m_anchors.size());
m_anchors.push_back(&node);
}
}
} // namespace YAML

View File

@ -1,74 +1,58 @@
#ifndef NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/node/ptr.h"
#include <vector>
namespace YAML {
namespace detail {
class node;
} // namespace detail
struct Mark;
} // namespace YAML
namespace YAML
{
class Node;
namespace YAML {
class Node;
class NodeBuilder: public EventHandler
{
public:
NodeBuilder();
virtual ~NodeBuilder();
Node Root();
virtual void OnDocumentStart(const Mark& mark);
virtual void OnDocumentEnd();
virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnSequenceEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor);
virtual void OnMapEnd();
private:
detail::node& Push(anchor_t anchor);
void Push(detail::node& node);
void Pop();
void RegisterAnchor(anchor_t anchor, detail::node& node);
private:
detail::shared_memory_holder m_pMemory;
detail::node *m_pRoot;
typedef std::vector<detail::node *> Nodes;
Nodes m_stack;
Nodes m_anchors;
class NodeBuilder : public EventHandler {
public:
NodeBuilder();
NodeBuilder(const NodeBuilder&) = delete;
NodeBuilder(NodeBuilder&&) = delete;
NodeBuilder& operator=(const NodeBuilder&) = delete;
NodeBuilder& operator=(NodeBuilder&&) = delete;
~NodeBuilder() override;
typedef std::pair<detail::node *, bool> PushedKey;
std::vector<PushedKey> m_keys;
std::size_t m_mapDepth;
};
}
Node Root();
#endif // NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
void OnDocumentStart(const Mark& mark) override;
void OnDocumentEnd() override;
void OnNull(const Mark& mark, anchor_t anchor) override;
void OnAlias(const Mark& mark, anchor_t anchor) override;
void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) override;
void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnSequenceEnd() override;
void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnMapEnd() override;
private:
detail::node& Push(const Mark& mark, anchor_t anchor);
void Push(detail::node& node);
void Pop();
void RegisterAnchor(anchor_t anchor, detail::node& node);
private:
detail::shared_memory_holder m_pMemory;
detail::node* m_pRoot;
using Nodes = std::vector<detail::node *>;
Nodes m_stack;
Nodes m_anchors;
using PushedKey = std::pair<detail::node*, bool>;
std::vector<PushedKey> m_keys;
std::size_t m_mapDepth;
};
} // namespace YAML
#endif // NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,98 +1,99 @@
#include "nodeevents.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
void NodeEvents::AliasManager::RegisterReference(const detail::node& node) {
m_anchorByIdentity.insert(std::make_pair(node.ref(), _CreateNewAnchor()));
namespace YAML
{
void NodeEvents::AliasManager::RegisterReference(const detail::node& node)
{
m_anchorByIdentity.insert(std::make_pair(node.ref(), _CreateNewAnchor()));
}
anchor_t NodeEvents::AliasManager::LookupAnchor(const detail::node& node) const
{
AnchorByIdentity::const_iterator it = m_anchorByIdentity.find(node.ref());
if(it == m_anchorByIdentity.end())
return 0;
return it->second;
}
NodeEvents::NodeEvents(const Node& node): m_pMemory(node.m_pMemory), m_root(*node.m_pNode)
{
Setup(m_root);
}
void NodeEvents::Setup(const detail::node& node)
{
int& refCount = m_refCount[node.ref()];
refCount++;
if(refCount > 1)
return;
if(node.type() == NodeType::Sequence) {
for(detail::const_node_iterator it=node.begin();it!=node.end();++it)
Setup(**it);
} else if(node.type() == NodeType::Map) {
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) {
Setup(*it->first);
Setup(*it->second);
}
}
}
void NodeEvents::Emit(EventHandler& handler)
{
AliasManager am;
handler.OnDocumentStart(Mark());
Emit(m_root, handler, am);
handler.OnDocumentEnd();
}
void NodeEvents::Emit(const detail::node& node, EventHandler& handler, AliasManager& am) const
{
anchor_t anchor = NullAnchor;
if(IsAliased(node)) {
anchor = am.LookupAnchor(node);
if(anchor) {
handler.OnAlias(Mark(), anchor);
return;
}
am.RegisterReference(node);
anchor = am.LookupAnchor(node);
}
switch(node.type()) {
case NodeType::Undefined:
break;
case NodeType::Null:
handler.OnNull(Mark(), anchor);
break;
case NodeType::Scalar:
handler.OnScalar(Mark(), node.tag(), anchor, node.scalar());
break;
case NodeType::Sequence:
handler.OnSequenceStart(Mark(), node.tag(), anchor);
for(detail::const_node_iterator it=node.begin();it!=node.end();++it)
Emit(**it, handler, am);
handler.OnSequenceEnd();
break;
case NodeType::Map:
handler.OnMapStart(Mark(), node.tag(), anchor);
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) {
Emit(*it->first, handler, am);
Emit(*it->second, handler, am);
}
handler.OnMapEnd();
break;
}
}
bool NodeEvents::IsAliased(const detail::node& node) const
{
RefCount::const_iterator it = m_refCount.find(node.ref());
return it != m_refCount.end() && it->second > 1;
}
}
anchor_t NodeEvents::AliasManager::LookupAnchor(
const detail::node& node) const {
auto it = m_anchorByIdentity.find(node.ref());
if (it == m_anchorByIdentity.end())
return 0;
return it->second;
}
NodeEvents::NodeEvents(const Node& node)
: m_pMemory(node.m_pMemory), m_root(node.m_pNode), m_refCount{} {
if (m_root)
Setup(*m_root);
}
void NodeEvents::Setup(const detail::node& node) {
int& refCount = m_refCount[node.ref()];
refCount++;
if (refCount > 1)
return;
if (node.type() == NodeType::Sequence) {
for (auto element : node)
Setup(*element);
} else if (node.type() == NodeType::Map) {
for (auto element : node) {
Setup(*element.first);
Setup(*element.second);
}
}
}
void NodeEvents::Emit(EventHandler& handler) {
AliasManager am;
handler.OnDocumentStart(Mark());
if (m_root)
Emit(*m_root, handler, am);
handler.OnDocumentEnd();
}
void NodeEvents::Emit(const detail::node& node, EventHandler& handler,
AliasManager& am) const {
anchor_t anchor = NullAnchor;
if (IsAliased(node)) {
anchor = am.LookupAnchor(node);
if (anchor) {
handler.OnAlias(Mark(), anchor);
return;
}
am.RegisterReference(node);
anchor = am.LookupAnchor(node);
}
switch (node.type()) {
case NodeType::Undefined:
break;
case NodeType::Null:
handler.OnNull(Mark(), anchor);
break;
case NodeType::Scalar:
handler.OnScalar(Mark(), node.tag(), anchor, node.scalar());
break;
case NodeType::Sequence:
handler.OnSequenceStart(Mark(), node.tag(), anchor, node.style());
for (auto element : node)
Emit(*element, handler, am);
handler.OnSequenceEnd();
break;
case NodeType::Map:
handler.OnMapStart(Mark(), node.tag(), anchor, node.style());
for (auto element : node) {
Emit(*element.first, handler, am);
Emit(*element.second, handler, am);
}
handler.OnMapEnd();
break;
}
}
bool NodeEvents::IsAliased(const detail::node& node) const {
auto it = m_refCount.find(node.ref());
return it != m_refCount.end() && it->second > 1;
}
} // namespace YAML

View File

@ -1,68 +1,57 @@
#ifndef NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/node/ptr.h"
#include <map>
#include <vector>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/node/ptr.h"
namespace YAML
{
class EventHandler;
class Node;
class NodeEvents
{
public:
explicit NodeEvents(const Node& node);
void Emit(EventHandler& handler);
private:
class AliasManager {
public:
AliasManager(): m_curAnchor(0) {}
void RegisterReference(const detail::node& node);
anchor_t LookupAnchor(const detail::node& node) const;
private:
anchor_t _CreateNewAnchor() { return ++m_curAnchor; }
private:
typedef std::map<const detail::node_ref*, anchor_t> AnchorByIdentity;
AnchorByIdentity m_anchorByIdentity;
anchor_t m_curAnchor;
};
void Setup(const detail::node& node);
void Emit(const detail::node& node, EventHandler& handler, AliasManager& am) const;
bool IsAliased(const detail::node& node) const;
private:
detail::shared_memory_holder m_pMemory;
detail::node& m_root;
typedef std::map<const detail::node_ref *, int> RefCount;
RefCount m_refCount;
};
}
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
#endif // NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
namespace YAML {
class EventHandler;
class Node;
class NodeEvents {
public:
explicit NodeEvents(const Node& node);
NodeEvents(const NodeEvents&) = delete;
NodeEvents(NodeEvents&&) = delete;
NodeEvents& operator=(const NodeEvents&) = delete;
NodeEvents& operator=(NodeEvents&&) = delete;
void Emit(EventHandler& handler);
private:
class AliasManager {
public:
AliasManager() : m_anchorByIdentity{}, m_curAnchor(0) {}
void RegisterReference(const detail::node& node);
anchor_t LookupAnchor(const detail::node& node) const;
private:
anchor_t _CreateNewAnchor() { return ++m_curAnchor; }
private:
using AnchorByIdentity = std::map<const detail::node_ref*, anchor_t>;
AnchorByIdentity m_anchorByIdentity;
anchor_t m_curAnchor;
};
void Setup(const detail::node& node);
void Emit(const detail::node& node, EventHandler& handler,
AliasManager& am) const;
bool IsAliased(const detail::node& node) const;
private:
detail::shared_memory_holder m_pMemory;
detail::node* m_root;
using RefCount = std::map<const detail::node_ref*, int>;
RefCount m_refCount;
};
} // namespace YAML
#endif // NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,17 +1,6 @@
#include "yaml-cpp/null.h"
#include <cstring>
namespace YAML {
_Null Null;
template <std::size_t N>
static bool same(const char* str, std::size_t size, const char (&literal)[N]) {
constexpr int literalSize = N - 1; // minus null terminator
return size == literalSize && std::strncmp(str, literal, literalSize) == 0;
namespace YAML
{
_Null Null;
}
bool IsNullString(const char* str, std::size_t size) {
return size == 0 || same(str, size, "~") || same(str, size, "null") ||
same(str, size, "Null") || same(str, size, "NULL");
}
} // namespace YAML

63
src/ostream.cpp Normal file
View File

@ -0,0 +1,63 @@
#include "yaml-cpp/ostream.h"
#include <cstring>
namespace YAML
{
ostream::ostream(): m_buffer(0), m_pos(0), m_size(0), m_row(0), m_col(0)
{
reserve(1024);
}
ostream::~ostream()
{
delete [] m_buffer;
}
void ostream::reserve(unsigned size)
{
if(size <= m_size)
return;
char *newBuffer = new char[size];
std::memset(newBuffer, 0, size * sizeof(char));
std::memcpy(newBuffer, m_buffer, m_size * sizeof(char));
delete [] m_buffer;
m_buffer = newBuffer;
m_size = size;
}
void ostream::put(char ch)
{
if(m_pos >= m_size - 1) // an extra space for the NULL terminator
reserve(m_size * 2);
m_buffer[m_pos] = ch;
m_pos++;
if(ch == '\n') {
m_row++;
m_col = 0;
} else
m_col++;
}
ostream& operator << (ostream& out, const char *str)
{
std::size_t length = std::strlen(str);
for(std::size_t i=0;i<length;i++)
out.put(str[i]);
return out;
}
ostream& operator << (ostream& out, const std::string& str)
{
out << str.c_str();
return out;
}
ostream& operator << (ostream& out, char ch)
{
out.put(ch);
return out;
}
}

View File

@ -1,62 +0,0 @@
#include "yaml-cpp/ostream_wrapper.h"
#include <algorithm>
#include <cstring>
#include <ostream>
namespace YAML {
ostream_wrapper::ostream_wrapper()
: m_buffer(1, '\0'),
m_pStream(nullptr),
m_pos(0),
m_row(0),
m_col(0),
m_comment(false) {}
ostream_wrapper::ostream_wrapper(std::ostream& stream)
: m_buffer{},
m_pStream(&stream),
m_pos(0),
m_row(0),
m_col(0),
m_comment(false) {}
ostream_wrapper::~ostream_wrapper() = default;
void ostream_wrapper::write(const std::string& str) {
if (m_pStream) {
m_pStream->write(str.c_str(), str.size());
} else {
m_buffer.resize(std::max(m_buffer.size(), m_pos + str.size() + 1));
std::copy(str.begin(), str.end(), m_buffer.begin() + m_pos);
}
for (char ch : str) {
update_pos(ch);
}
}
void ostream_wrapper::write(const char* str, std::size_t size) {
if (m_pStream) {
m_pStream->write(str, size);
} else {
m_buffer.resize(std::max(m_buffer.size(), m_pos + size + 1));
std::copy(str, str + size, m_buffer.begin() + m_pos);
}
for (std::size_t i = 0; i < size; i++) {
update_pos(str[i]);
}
}
void ostream_wrapper::update_pos(char ch) {
m_pos++;
m_col++;
if (ch == '\n') {
m_row++;
m_col = 0;
m_comment = false;
}
}
} // namespace YAML

Some files were not shown because too many files have changed in this diff Show More