libuv/test/benchmark-multi-accept.c
tjarlama 270d05189c
test: move to ASSERT_NULL and ASSERT_NOT_NULL test macros
Moving to new style test macros will make debugging easier in case
of test failure and improve redability. This commit will replace all
ASSERT macros matching the statement:
`ASSERT(identifier (== or !=) value);`
to:
`ASSERT_(NOT_)NULL(identifier);`

Refs: https://github.com/libuv/libuv/issues/2974
PR-URL: https://github.com/libuv/libuv/pull/3081
Reviewed-By: Santiago Gimeno <santiago.gimeno@gmail.com>
2021-02-14 10:05:46 +01:00

452 lines
14 KiB
C

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "task.h"
#include "uv.h"
#define IPC_PIPE_NAME TEST_PIPENAME
#define NUM_CONNECTS (250 * 1000)
union stream_handle {
uv_pipe_t pipe;
uv_tcp_t tcp;
};
/* Use as (uv_stream_t *) &handle_storage -- it's kind of clunky but it
* avoids aliasing warnings.
*/
typedef unsigned char handle_storage_t[sizeof(union stream_handle)];
/* Used for passing around the listen handle, not part of the benchmark proper.
* We have an overabundance of server types here. It works like this:
*
* 1. The main thread starts an IPC pipe server.
* 2. The worker threads connect to the IPC server and obtain a listen handle.
* 3. The worker threads start accepting requests on the listen handle.
* 4. The main thread starts connecting repeatedly.
*
* Step #4 should perhaps be farmed out over several threads.
*/
struct ipc_server_ctx {
handle_storage_t server_handle;
unsigned int num_connects;
uv_pipe_t ipc_pipe;
};
struct ipc_peer_ctx {
handle_storage_t peer_handle;
uv_write_t write_req;
};
struct ipc_client_ctx {
uv_connect_t connect_req;
uv_stream_t* server_handle;
uv_pipe_t ipc_pipe;
char scratch[16];
};
/* Used in the actual benchmark. */
struct server_ctx {
handle_storage_t server_handle;
unsigned int num_connects;
uv_async_t async_handle;
uv_thread_t thread_id;
uv_sem_t semaphore;
};
struct client_ctx {
handle_storage_t client_handle;
unsigned int num_connects;
uv_connect_t connect_req;
uv_idle_t idle_handle;
};
static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status);
static void ipc_write_cb(uv_write_t* req, int status);
static void ipc_close_cb(uv_handle_t* handle);
static void ipc_connect_cb(uv_connect_t* req, int status);
static void ipc_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf);
static void ipc_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf);
static void sv_async_cb(uv_async_t* handle);
static void sv_connection_cb(uv_stream_t* server_handle, int status);
static void sv_read_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* buf);
static void sv_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf);
static void cl_connect_cb(uv_connect_t* req, int status);
static void cl_idle_cb(uv_idle_t* handle);
static void cl_close_cb(uv_handle_t* handle);
static struct sockaddr_in listen_addr;
static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status) {
struct ipc_server_ctx* sc;
struct ipc_peer_ctx* pc;
uv_loop_t* loop;
uv_buf_t buf;
loop = ipc_pipe->loop;
buf = uv_buf_init("PING", 4);
sc = container_of(ipc_pipe, struct ipc_server_ctx, ipc_pipe);
pc = calloc(1, sizeof(*pc));
ASSERT_NOT_NULL(pc);
if (ipc_pipe->type == UV_TCP)
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &pc->peer_handle));
else if (ipc_pipe->type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) &pc->peer_handle, 1));
else
ASSERT(0);
ASSERT(0 == uv_accept(ipc_pipe, (uv_stream_t*) &pc->peer_handle));
ASSERT(0 == uv_write2(&pc->write_req,
(uv_stream_t*) &pc->peer_handle,
&buf,
1,
(uv_stream_t*) &sc->server_handle,
ipc_write_cb));
if (--sc->num_connects == 0)
uv_close((uv_handle_t*) ipc_pipe, NULL);
}
static void ipc_write_cb(uv_write_t* req, int status) {
struct ipc_peer_ctx* ctx;
ctx = container_of(req, struct ipc_peer_ctx, write_req);
uv_close((uv_handle_t*) &ctx->peer_handle, ipc_close_cb);
}
static void ipc_close_cb(uv_handle_t* handle) {
struct ipc_peer_ctx* ctx;
ctx = container_of(handle, struct ipc_peer_ctx, peer_handle);
free(ctx);
}
static void ipc_connect_cb(uv_connect_t* req, int status) {
struct ipc_client_ctx* ctx;
ctx = container_of(req, struct ipc_client_ctx, connect_req);
ASSERT(0 == status);
ASSERT(0 == uv_read_start((uv_stream_t*) &ctx->ipc_pipe,
ipc_alloc_cb,
ipc_read_cb));
}
static void ipc_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
struct ipc_client_ctx* ctx;
ctx = container_of(handle, struct ipc_client_ctx, ipc_pipe);
buf->base = ctx->scratch;
buf->len = sizeof(ctx->scratch);
}
static void ipc_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf) {
struct ipc_client_ctx* ctx;
uv_loop_t* loop;
uv_handle_type type;
uv_pipe_t* ipc_pipe;
ipc_pipe = (uv_pipe_t*) handle;
ctx = container_of(ipc_pipe, struct ipc_client_ctx, ipc_pipe);
loop = ipc_pipe->loop;
ASSERT(1 == uv_pipe_pending_count(ipc_pipe));
type = uv_pipe_pending_type(ipc_pipe);
if (type == UV_TCP)
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) ctx->server_handle));
else if (type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) ctx->server_handle, 0));
else
ASSERT(0);
ASSERT(0 == uv_accept(handle, ctx->server_handle));
uv_close((uv_handle_t*) &ctx->ipc_pipe, NULL);
}
/* Set up an IPC pipe server that hands out listen sockets to the worker
* threads. It's kind of cumbersome for such a simple operation, maybe we
* should revive uv_import() and uv_export().
*/
static void send_listen_handles(uv_handle_type type,
unsigned int num_servers,
struct server_ctx* servers) {
struct ipc_server_ctx ctx;
uv_loop_t* loop;
unsigned int i;
loop = uv_default_loop();
ctx.num_connects = num_servers;
if (type == UV_TCP) {
ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &ctx.server_handle));
ASSERT(0 == uv_tcp_bind((uv_tcp_t*) &ctx.server_handle,
(const struct sockaddr*) &listen_addr,
0));
}
else
ASSERT(0);
/* We need to initialize this pipe with ipc=0 - this is not a uv_pipe we'll
* be sending handles over, it's just for listening for new connections.
* If we accept a connection then the connected pipe must be initialized
* with ipc=1.
*/
ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 0));
ASSERT(0 == uv_pipe_bind(&ctx.ipc_pipe, IPC_PIPE_NAME));
ASSERT(0 == uv_listen((uv_stream_t*) &ctx.ipc_pipe, 128, ipc_connection_cb));
for (i = 0; i < num_servers; i++)
uv_sem_post(&servers[i].semaphore);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
uv_close((uv_handle_t*) &ctx.server_handle, NULL);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
for (i = 0; i < num_servers; i++)
uv_sem_wait(&servers[i].semaphore);
}
static void get_listen_handle(uv_loop_t* loop, uv_stream_t* server_handle) {
struct ipc_client_ctx ctx;
ctx.server_handle = server_handle;
ctx.server_handle->data = "server handle";
ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 1));
uv_pipe_connect(&ctx.connect_req,
&ctx.ipc_pipe,
IPC_PIPE_NAME,
ipc_connect_cb);
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
}
static void server_cb(void *arg) {
struct server_ctx *ctx;
uv_loop_t loop;
ctx = arg;
ASSERT(0 == uv_loop_init(&loop));
ASSERT(0 == uv_async_init(&loop, &ctx->async_handle, sv_async_cb));
uv_unref((uv_handle_t*) &ctx->async_handle);
/* Wait until the main thread is ready. */
uv_sem_wait(&ctx->semaphore);
get_listen_handle(&loop, (uv_stream_t*) &ctx->server_handle);
uv_sem_post(&ctx->semaphore);
/* Now start the actual benchmark. */
ASSERT(0 == uv_listen((uv_stream_t*) &ctx->server_handle,
128,
sv_connection_cb));
ASSERT(0 == uv_run(&loop, UV_RUN_DEFAULT));
uv_loop_close(&loop);
}
static void sv_async_cb(uv_async_t* handle) {
struct server_ctx* ctx;
ctx = container_of(handle, struct server_ctx, async_handle);
uv_close((uv_handle_t*) &ctx->server_handle, NULL);
uv_close((uv_handle_t*) &ctx->async_handle, NULL);
}
static void sv_connection_cb(uv_stream_t* server_handle, int status) {
handle_storage_t* storage;
struct server_ctx* ctx;
ctx = container_of(server_handle, struct server_ctx, server_handle);
ASSERT(status == 0);
storage = malloc(sizeof(*storage));
ASSERT_NOT_NULL(storage);
if (server_handle->type == UV_TCP)
ASSERT(0 == uv_tcp_init(server_handle->loop, (uv_tcp_t*) storage));
else if (server_handle->type == UV_NAMED_PIPE)
ASSERT(0 == uv_pipe_init(server_handle->loop, (uv_pipe_t*) storage, 0));
else
ASSERT(0);
ASSERT(0 == uv_accept(server_handle, (uv_stream_t*) storage));
ASSERT(0 == uv_read_start((uv_stream_t*) storage, sv_alloc_cb, sv_read_cb));
ctx->num_connects++;
}
static void sv_alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
static char slab[32];
buf->base = slab;
buf->len = sizeof(slab);
}
static void sv_read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf) {
ASSERT(nread == UV_EOF);
uv_close((uv_handle_t*) handle, (uv_close_cb) free);
}
static void cl_connect_cb(uv_connect_t* req, int status) {
struct client_ctx* ctx = container_of(req, struct client_ctx, connect_req);
uv_idle_start(&ctx->idle_handle, cl_idle_cb);
ASSERT(0 == status);
}
static void cl_idle_cb(uv_idle_t* handle) {
struct client_ctx* ctx = container_of(handle, struct client_ctx, idle_handle);
uv_close((uv_handle_t*) &ctx->client_handle, cl_close_cb);
uv_idle_stop(&ctx->idle_handle);
}
static void cl_close_cb(uv_handle_t* handle) {
struct client_ctx* ctx;
ctx = container_of(handle, struct client_ctx, client_handle);
if (--ctx->num_connects == 0) {
uv_close((uv_handle_t*) &ctx->idle_handle, NULL);
return;
}
ASSERT(0 == uv_tcp_init(handle->loop, (uv_tcp_t*) &ctx->client_handle));
ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
(uv_tcp_t*) &ctx->client_handle,
(const struct sockaddr*) &listen_addr,
cl_connect_cb));
}
static int test_tcp(unsigned int num_servers, unsigned int num_clients) {
struct server_ctx* servers;
struct client_ctx* clients;
uv_loop_t* loop;
uv_tcp_t* handle;
unsigned int i;
double time;
ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &listen_addr));
loop = uv_default_loop();
servers = calloc(num_servers, sizeof(servers[0]));
clients = calloc(num_clients, sizeof(clients[0]));
ASSERT_NOT_NULL(servers);
ASSERT_NOT_NULL(clients);
/* We're making the assumption here that from the perspective of the
* OS scheduler, threads are functionally equivalent to and interchangeable
* with full-blown processes.
*/
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
ASSERT(0 == uv_sem_init(&ctx->semaphore, 0));
ASSERT(0 == uv_thread_create(&ctx->thread_id, server_cb, ctx));
}
send_listen_handles(UV_TCP, num_servers, servers);
for (i = 0; i < num_clients; i++) {
struct client_ctx* ctx = clients + i;
ctx->num_connects = NUM_CONNECTS / num_clients;
handle = (uv_tcp_t*) &ctx->client_handle;
handle->data = "client handle";
ASSERT(0 == uv_tcp_init(loop, handle));
ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
handle,
(const struct sockaddr*) &listen_addr,
cl_connect_cb));
ASSERT(0 == uv_idle_init(loop, &ctx->idle_handle));
}
{
uint64_t t = uv_hrtime();
ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
t = uv_hrtime() - t;
time = t / 1e9;
}
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
uv_async_send(&ctx->async_handle);
ASSERT(0 == uv_thread_join(&ctx->thread_id));
uv_sem_destroy(&ctx->semaphore);
}
printf("accept%u: %.0f accepts/sec (%u total)\n",
num_servers,
NUM_CONNECTS / time,
NUM_CONNECTS);
for (i = 0; i < num_servers; i++) {
struct server_ctx* ctx = servers + i;
printf(" thread #%u: %.0f accepts/sec (%u total, %.1f%%)\n",
i,
ctx->num_connects / time,
ctx->num_connects,
ctx->num_connects * 100.0 / NUM_CONNECTS);
}
free(clients);
free(servers);
MAKE_VALGRIND_HAPPY();
return 0;
}
BENCHMARK_IMPL(tcp_multi_accept2) {
return test_tcp(2, 40);
}
BENCHMARK_IMPL(tcp_multi_accept4) {
return test_tcp(4, 40);
}
BENCHMARK_IMPL(tcp_multi_accept8) {
return test_tcp(8, 40);
}