libuv/test/test-timer.c
tjarlama 270d05189c
test: move to ASSERT_NULL and ASSERT_NOT_NULL test macros
Moving to new style test macros will make debugging easier in case
of test failure and improve redability. This commit will replace all
ASSERT macros matching the statement:
`ASSERT(identifier (== or !=) value);`
to:
`ASSERT_(NOT_)NULL(identifier);`

Refs: https://github.com/libuv/libuv/issues/2974
PR-URL: https://github.com/libuv/libuv/pull/3081
Reviewed-By: Santiago Gimeno <santiago.gimeno@gmail.com>
2021-02-14 10:05:46 +01:00

348 lines
9.1 KiB
C

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "task.h"
static int once_cb_called = 0;
static int once_close_cb_called = 0;
static int repeat_cb_called = 0;
static int repeat_close_cb_called = 0;
static int order_cb_called = 0;
static uint64_t start_time;
static uv_timer_t tiny_timer;
static uv_timer_t huge_timer1;
static uv_timer_t huge_timer2;
static void once_close_cb(uv_handle_t* handle) {
printf("ONCE_CLOSE_CB\n");
ASSERT_NOT_NULL(handle);
ASSERT(0 == uv_is_active(handle));
once_close_cb_called++;
}
static void once_cb(uv_timer_t* handle) {
printf("ONCE_CB %d\n", once_cb_called);
ASSERT_NOT_NULL(handle);
ASSERT(0 == uv_is_active((uv_handle_t*) handle));
once_cb_called++;
uv_close((uv_handle_t*)handle, once_close_cb);
/* Just call this randomly for the code coverage. */
uv_update_time(uv_default_loop());
}
static void repeat_close_cb(uv_handle_t* handle) {
printf("REPEAT_CLOSE_CB\n");
ASSERT_NOT_NULL(handle);
repeat_close_cb_called++;
}
static void repeat_cb(uv_timer_t* handle) {
printf("REPEAT_CB\n");
ASSERT_NOT_NULL(handle);
ASSERT(1 == uv_is_active((uv_handle_t*) handle));
repeat_cb_called++;
if (repeat_cb_called == 5) {
uv_close((uv_handle_t*)handle, repeat_close_cb);
}
}
static void never_cb(uv_timer_t* handle) {
FATAL("never_cb should never be called");
}
TEST_IMPL(timer) {
uv_timer_t once_timers[10];
uv_timer_t *once;
uv_timer_t repeat, never;
unsigned int i;
int r;
start_time = uv_now(uv_default_loop());
ASSERT(0 < start_time);
/* Let 10 timers time out in 500 ms total. */
for (i = 0; i < ARRAY_SIZE(once_timers); i++) {
once = once_timers + i;
r = uv_timer_init(uv_default_loop(), once);
ASSERT(r == 0);
r = uv_timer_start(once, once_cb, i * 50, 0);
ASSERT(r == 0);
}
/* The 11th timer is a repeating timer that runs 4 times */
r = uv_timer_init(uv_default_loop(), &repeat);
ASSERT(r == 0);
r = uv_timer_start(&repeat, repeat_cb, 100, 100);
ASSERT(r == 0);
/* The 12th timer should not do anything. */
r = uv_timer_init(uv_default_loop(), &never);
ASSERT(r == 0);
r = uv_timer_start(&never, never_cb, 100, 100);
ASSERT(r == 0);
r = uv_timer_stop(&never);
ASSERT(r == 0);
uv_unref((uv_handle_t*)&never);
uv_run(uv_default_loop(), UV_RUN_DEFAULT);
ASSERT(once_cb_called == 10);
ASSERT(once_close_cb_called == 10);
printf("repeat_cb_called %d\n", repeat_cb_called);
ASSERT(repeat_cb_called == 5);
ASSERT(repeat_close_cb_called == 1);
ASSERT(500 <= uv_now(uv_default_loop()) - start_time);
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(timer_start_twice) {
uv_timer_t once;
int r;
r = uv_timer_init(uv_default_loop(), &once);
ASSERT(r == 0);
r = uv_timer_start(&once, never_cb, 86400 * 1000, 0);
ASSERT(r == 0);
r = uv_timer_start(&once, once_cb, 10, 0);
ASSERT(r == 0);
r = uv_run(uv_default_loop(), UV_RUN_DEFAULT);
ASSERT(r == 0);
ASSERT(once_cb_called == 1);
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(timer_init) {
uv_timer_t handle;
ASSERT(0 == uv_timer_init(uv_default_loop(), &handle));
ASSERT(0 == uv_timer_get_repeat(&handle));
ASSERT_UINT64_LE(0, uv_timer_get_due_in(&handle));
ASSERT(0 == uv_is_active((uv_handle_t*) &handle));
MAKE_VALGRIND_HAPPY();
return 0;
}
static void order_cb_a(uv_timer_t *handle) {
ASSERT(order_cb_called++ == *(int*)handle->data);
}
static void order_cb_b(uv_timer_t *handle) {
ASSERT(order_cb_called++ == *(int*)handle->data);
}
TEST_IMPL(timer_order) {
int first;
int second;
uv_timer_t handle_a;
uv_timer_t handle_b;
first = 0;
second = 1;
ASSERT(0 == uv_timer_init(uv_default_loop(), &handle_a));
ASSERT(0 == uv_timer_init(uv_default_loop(), &handle_b));
/* Test for starting handle_a then handle_b */
handle_a.data = &first;
ASSERT(0 == uv_timer_start(&handle_a, order_cb_a, 0, 0));
handle_b.data = &second;
ASSERT(0 == uv_timer_start(&handle_b, order_cb_b, 0, 0));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
ASSERT(order_cb_called == 2);
ASSERT(0 == uv_timer_stop(&handle_a));
ASSERT(0 == uv_timer_stop(&handle_b));
/* Test for starting handle_b then handle_a */
order_cb_called = 0;
handle_b.data = &first;
ASSERT(0 == uv_timer_start(&handle_b, order_cb_b, 0, 0));
handle_a.data = &second;
ASSERT(0 == uv_timer_start(&handle_a, order_cb_a, 0, 0));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
ASSERT(order_cb_called == 2);
MAKE_VALGRIND_HAPPY();
return 0;
}
static void tiny_timer_cb(uv_timer_t* handle) {
ASSERT(handle == &tiny_timer);
uv_close((uv_handle_t*) &tiny_timer, NULL);
uv_close((uv_handle_t*) &huge_timer1, NULL);
uv_close((uv_handle_t*) &huge_timer2, NULL);
}
TEST_IMPL(timer_huge_timeout) {
ASSERT(0 == uv_timer_init(uv_default_loop(), &tiny_timer));
ASSERT(0 == uv_timer_init(uv_default_loop(), &huge_timer1));
ASSERT(0 == uv_timer_init(uv_default_loop(), &huge_timer2));
ASSERT(0 == uv_timer_start(&tiny_timer, tiny_timer_cb, 1, 0));
ASSERT(0 == uv_timer_start(&huge_timer1, tiny_timer_cb, 0xffffffffffffLL, 0));
ASSERT(0 == uv_timer_start(&huge_timer2, tiny_timer_cb, (uint64_t) -1, 0));
ASSERT_UINT64_EQ(1, uv_timer_get_due_in(&tiny_timer));
ASSERT_UINT64_EQ(281474976710655, uv_timer_get_due_in(&huge_timer1));
ASSERT_UINT64_LE(0, uv_timer_get_due_in(&huge_timer2));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
MAKE_VALGRIND_HAPPY();
return 0;
}
static void huge_repeat_cb(uv_timer_t* handle) {
static int ncalls;
if (ncalls == 0)
ASSERT(handle == &huge_timer1);
else
ASSERT(handle == &tiny_timer);
if (++ncalls == 10) {
uv_close((uv_handle_t*) &tiny_timer, NULL);
uv_close((uv_handle_t*) &huge_timer1, NULL);
}
}
TEST_IMPL(timer_huge_repeat) {
ASSERT(0 == uv_timer_init(uv_default_loop(), &tiny_timer));
ASSERT(0 == uv_timer_init(uv_default_loop(), &huge_timer1));
ASSERT(0 == uv_timer_start(&tiny_timer, huge_repeat_cb, 2, 2));
ASSERT(0 == uv_timer_start(&huge_timer1, huge_repeat_cb, 1, (uint64_t) -1));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
MAKE_VALGRIND_HAPPY();
return 0;
}
static unsigned int timer_run_once_timer_cb_called;
static void timer_run_once_timer_cb(uv_timer_t* handle) {
timer_run_once_timer_cb_called++;
}
TEST_IMPL(timer_run_once) {
uv_timer_t timer_handle;
ASSERT(0 == uv_timer_init(uv_default_loop(), &timer_handle));
ASSERT(0 == uv_timer_start(&timer_handle, timer_run_once_timer_cb, 0, 0));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_ONCE));
ASSERT(1 == timer_run_once_timer_cb_called);
ASSERT(0 == uv_timer_start(&timer_handle, timer_run_once_timer_cb, 1, 0));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_ONCE));
ASSERT(2 == timer_run_once_timer_cb_called);
uv_close((uv_handle_t*) &timer_handle, NULL);
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_ONCE));
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(timer_is_closing) {
uv_timer_t handle;
ASSERT(0 == uv_timer_init(uv_default_loop(), &handle));
uv_close((uv_handle_t *)&handle, NULL);
ASSERT(UV_EINVAL == uv_timer_start(&handle, never_cb, 100, 100));
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(timer_null_callback) {
uv_timer_t handle;
ASSERT(0 == uv_timer_init(uv_default_loop(), &handle));
ASSERT(UV_EINVAL == uv_timer_start(&handle, NULL, 100, 100));
MAKE_VALGRIND_HAPPY();
return 0;
}
static uint64_t timer_early_check_expected_time;
static void timer_early_check_cb(uv_timer_t* handle) {
uint64_t hrtime = uv_hrtime() / 1000000;
ASSERT(hrtime >= timer_early_check_expected_time);
}
TEST_IMPL(timer_early_check) {
uv_timer_t timer_handle;
const uint64_t timeout_ms = 10;
timer_early_check_expected_time = uv_now(uv_default_loop()) + timeout_ms;
ASSERT(0 == uv_timer_init(uv_default_loop(), &timer_handle));
ASSERT(0 == uv_timer_start(&timer_handle, timer_early_check_cb, timeout_ms, 0));
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
uv_close((uv_handle_t*) &timer_handle, NULL);
ASSERT(0 == uv_run(uv_default_loop(), UV_RUN_DEFAULT));
MAKE_VALGRIND_HAPPY();
return 0;
}