cpptrace/src/binary/mach-o.hpp

690 lines
27 KiB
C++

#ifndef MACHO_HPP
#define MACHO_HPP
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#if IS_APPLE
// A number of mach-o functions are deprecated as of macos 13
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include <cstdio>
#include <cstring>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include <iostream>
#include <iomanip>
#include <mach-o/loader.h>
#include <mach-o/swap.h>
#include <mach-o/fat.h>
#include <crt_externs.h>
#include <mach-o/nlist.h>
#include <mach-o/stab.h>
#include <mach-o/arch.h>
namespace cpptrace {
namespace detail {
inline bool is_mach_o(std::uint32_t magic) {
switch(magic) {
case FAT_MAGIC:
case FAT_CIGAM:
case MH_MAGIC:
case MH_CIGAM:
case MH_MAGIC_64:
case MH_CIGAM_64:
return true;
default:
return false;
}
}
inline bool file_is_mach_o(const std::string& object_path) noexcept {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return false;
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(magic) {
return is_mach_o(magic.unwrap_value());
} else {
return false;
}
}
inline bool is_fat_magic(std::uint32_t magic) {
return magic == FAT_MAGIC || magic == FAT_CIGAM;
}
// Based on https://github.com/AlexDenisov/segment_dumper/blob/master/main.c
// and https://lowlevelbits.org/parsing-mach-o-files/
inline bool is_magic_64(std::uint32_t magic) {
return magic == MH_MAGIC_64 || magic == MH_CIGAM_64;
}
inline bool should_swap_bytes(std::uint32_t magic) {
return magic == MH_CIGAM || magic == MH_CIGAM_64 || magic == FAT_CIGAM;
}
inline void swap_mach_header(mach_header_64& header) {
swap_mach_header_64(&header, NX_UnknownByteOrder);
}
inline void swap_mach_header(mach_header& header) {
swap_mach_header(&header, NX_UnknownByteOrder);
}
inline void swap_segment_command(segment_command_64& segment) {
swap_segment_command_64(&segment, NX_UnknownByteOrder);
}
inline void swap_segment_command(segment_command& segment) {
swap_segment_command(&segment, NX_UnknownByteOrder);
}
inline void swap_nlist(struct nlist& entry) {
swap_nlist(&entry, 1, NX_UnknownByteOrder);
}
inline void swap_nlist(struct nlist_64& entry) {
swap_nlist_64(&entry, 1, NX_UnknownByteOrder);
}
#ifdef __LP64__
#define LP(x) x##_64
#else
#define LP(x) x
#endif
struct load_command_entry {
std::uint32_t file_offset;
std::uint32_t cmd;
std::uint32_t cmdsize;
};
class mach_o {
file_wrapper file;
std::string object_path;
std::uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
std::uint32_t filetype;
std::uint32_t n_load_commands;
std::uint32_t sizeof_load_commands;
std::uint32_t flags;
std::size_t bits = 0; // 32 or 64 once load_mach is called
std::size_t load_base = 0;
std::size_t fat_index = std::numeric_limits<std::size_t>::max();
std::vector<load_command_entry> load_commands;
struct symtab_info_data {
symtab_command symtab;
std::unique_ptr<char[]> stringtab;
Result<const char*, internal_error> get_string(std::size_t index) const {
if(stringtab && index < symtab.strsize) {
return stringtab.get() + index;
} else {
return internal_error("can't retrieve symbol from symtab");
}
}
};
bool tried_to_load_symtab = false;
optional<symtab_info_data> symtab_info;
mach_o(
file_wrapper file,
const std::string& object_path,
std::uint32_t magic
) :
file(std::move(file)),
object_path(object_path),
magic(magic) {}
Result<monostate, internal_error> load() {
if(magic == FAT_MAGIC || magic == FAT_CIGAM) {
return load_fat_mach();
} else {
fat_index = 0;
if(is_magic_64(magic)) {
return load_mach<64>();
} else {
return load_mach<32>();
}
}
}
public:
static inline NODISCARD Result<mach_o, internal_error> open_mach_o(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
}
if(!is_mach_o(magic.unwrap_value())) {
return internal_error("File is not mach-o {}", object_path);
}
mach_o obj(std::move(file), object_path, magic.unwrap_value());
auto result = obj.load();
if(result.is_error()) {
return result.unwrap_error();
} else {
return obj;
}
}
mach_o(mach_o&&) = default;
~mach_o() = default;
Result<std::uintptr_t, internal_error> get_text_vmaddr() {
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
if(segment.is_error()) {
segment.drop_error();
}
if(std::strcmp(segment.unwrap_value().segname, "__TEXT") == 0) {
return segment.unwrap_value().vmaddr;
}
}
}
// somehow no __TEXT section was found...
return internal_error("Couldn't find __TEXT section while parsing Mach-O object");
}
std::size_t get_fat_index() const {
VERIFY(fat_index != std::numeric_limits<std::size_t>::max());
return fat_index;
}
void print_segments() const {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment_load = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(segment_load.is_error()) {
fprintf(stderr, " error\n");
segment_load.drop_error();
continue;
}
auto& segment = segment_load.unwrap_value();
fprintf(stderr, " cmd %u\n", segment.cmd);
fprintf(stderr, " cmdsize %u\n", segment.cmdsize);
fprintf(stderr, " segname %s\n", segment.segname);
fprintf(stderr, " vmaddr 0x%llx\n", segment.vmaddr);
fprintf(stderr, " vmsize 0x%llx\n", segment.vmsize);
fprintf(stderr, " off 0x%llx\n", segment.fileoff);
fprintf(stderr, " filesize %llu\n", segment.filesize);
fprintf(stderr, " nsects %u\n", segment.nsects);
}
i++;
}
}
optional<symtab_info_data>& get_symtab_info() {
if(!symtab_info.has_value() && !tried_to_load_symtab) {
// don't try to load the symtab again if for some reason loading here fails
tried_to_load_symtab = true;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
symtab_info_data info;
auto symtab = load_symbol_table_command(command.file_offset);
if(!symtab) {
// TODO
}
info.symtab = symtab.unwrap_value();
auto string = load_string_table(info.symtab.stroff, info.symtab.strsize);
if(!string) {
// TODO
}
info.stringtab = std::move(string).unwrap_value();
symtab_info = std::move(info);
break;
}
}
}
return symtab_info;
}
void print_symbol_table_entry(
const nlist_64& entry,
const std::unique_ptr<char[]>& stringtab,
std::size_t stringsize,
std::size_t j
) const {
const char* type = "";
if(entry.n_type & N_STAB) {
switch(entry.n_type) {
case N_SO: type = "N_SO"; break;
case N_OSO: type = "N_OSO"; break;
case N_BNSYM: type = "N_BNSYM"; break;
case N_ENSYM: type = "N_ENSYM"; break;
case N_FUN: type = "N_FUN"; break;
}
} else if((entry.n_type & N_TYPE) == N_SECT) {
type = "N_SECT";
}
fprintf(
stderr,
"%5llu %8llx %2llx %7s %2llu %4llx %16llx %s\n",
to_ull(j),
to_ull(entry.n_un.n_strx),
to_ull(entry.n_type),
type,
to_ull(entry.n_sect),
to_ull(entry.n_desc),
to_ull(entry.n_value),
stringtab == nullptr
? "Stringtab error"
: entry.n_un.n_strx < stringsize
? stringtab.get() + entry.n_un.n_strx
: "String index out of bounds"
);
}
void print_symbol_table() {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
auto symtab_load = load_symbol_table_command(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(symtab_load.is_error()) {
fprintf(stderr, " error\n");
symtab_load.drop_error();
continue;
}
auto& symtab = symtab_load.unwrap_value();
fprintf(stderr, " cmd %llu\n", to_ull(symtab.cmd));
fprintf(stderr, " cmdsize %llu\n", to_ull(symtab.cmdsize));
fprintf(stderr, " symoff 0x%llu\n", to_ull(symtab.symoff));
fprintf(stderr, " nsyms %llu\n", to_ull(symtab.nsyms));
fprintf(stderr, " stroff 0x%llu\n", to_ull(symtab.stroff));
fprintf(stderr, " strsize %llu\n", to_ull(symtab.strsize));
auto stringtab = load_string_table(symtab.stroff, symtab.strsize);
if(!stringtab) {
stringtab.drop_error();
}
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!entry) {
fprintf(stderr, "error loading symtab entry\n");
entry.drop_error();
continue;
}
print_symbol_table_entry(
entry.unwrap_value(),
std::move(stringtab).value_or(std::unique_ptr<char[]>(nullptr)),
symtab.strsize,
j
);
}
}
i++;
}
}
struct debug_map_entry {
uint64_t source_address;
uint64_t size;
std::string name;
};
struct symbol_entry {
uint64_t address;
std::string name;
};
// map from object file to a vector of symbols to resolve
using debug_map = std::unordered_map<std::string, std::vector<debug_map_entry>>;
// produce information similar to dsymutil -dump-debug-map
debug_map get_debug_map() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
debug_map debug_map;
const auto& symtab_info = get_symtab_info().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
std::string current_module;
optional<debug_map_entry> current_function;
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
// TODO
}
auto& entry = load_entry.unwrap_value();
// entry.n_type & N_STAB indicates symbolic debug info
if(!(entry.n_type & N_STAB)) {
continue;
}
switch(entry.n_type) {
case N_SO:
// pass - these encode path and filename for the module, if applicable
break;
case N_OSO:
{
// sets the module
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
// TODO
}
current_module = str.unwrap_value();
}
break;
case N_BNSYM: break; // pass
case N_ENSYM: break; // pass
case N_FUN:
{
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
// TODO
}
if(str.unwrap_value()[0] == 0) {
// end of function scope
if(!current_function) { /**/ }
current_function.unwrap().size = entry.n_value;
debug_map[current_module].push_back(std::move(current_function).unwrap());
} else {
current_function = debug_map_entry{};
current_function.unwrap().source_address = entry.n_value;
current_function.unwrap().name = str.unwrap_value();
}
}
break;
}
}
return debug_map;
}
std::vector<symbol_entry> symbol_table() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
std::vector<symbol_entry> symbols;
const auto& symtab_info = get_symtab_info().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
// TODO
}
auto& entry = load_entry.unwrap_value();
if(entry.n_type & N_STAB) {
continue;
}
if((entry.n_type & N_TYPE) == N_SECT) {
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
// TODO
}
symbols.push_back({
entry.n_value,
str.unwrap_value()
});
}
}
return symbols;
}
// produce information similar to dsymutil -dump-debug-map
static void print_debug_map(const debug_map& debug_map) {
for(const auto& entry : debug_map) {
std::cout<<entry.first<<": "<< '\n';
for(const auto& symbol : entry.second) {
std::cerr
<< " "
<< symbol.name
<< " "
<< std::hex
<< symbol.source_address
<< " "
<< symbol.size
<< std::dec
<< '\n';
}
}
}
private:
template<std::size_t Bits>
Result<monostate, internal_error> load_mach() {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
bits = Bits;
using Mach_Header = typename std::conditional<Bits == 32, mach_header, mach_header_64>::type;
std::size_t header_size = sizeof(Mach_Header);
auto load_header = load_bytes<Mach_Header>(file, load_base);
if(!load_header) {
return load_header.unwrap_error();
}
Mach_Header& header = load_header.unwrap_value();
magic = header.magic;
if(should_swap()) {
swap_mach_header(header);
}
cputype = header.cputype;
cpusubtype = header.cpusubtype;
filetype = header.filetype;
n_load_commands = header.ncmds;
sizeof_load_commands = header.sizeofcmds;
flags = header.flags;
// handle load commands
std::uint32_t ncmds = header.ncmds;
std::uint32_t load_commands_offset = load_base + header_size;
// iterate load commands
std::uint32_t actual_offset = load_commands_offset;
for(std::uint32_t i = 0; i < ncmds; i++) {
auto load_cmd = load_bytes<load_command>(file, actual_offset);
if(!load_cmd) {
return load_cmd.unwrap_error();
}
load_command& cmd = load_cmd.unwrap_value();
if(should_swap()) {
swap_load_command(&cmd, NX_UnknownByteOrder);
}
load_commands.push_back({ actual_offset, cmd.cmd, cmd.cmdsize });
actual_offset += cmd.cmdsize;
}
return monostate{};
}
Result<monostate, internal_error> load_fat_mach() {
std::size_t header_size = sizeof(fat_header);
std::size_t arch_size = sizeof(fat_arch);
auto load_header = load_bytes<fat_header>(file, 0);
if(!load_header) {
return load_header.unwrap_error();
}
fat_header& header = load_header.unwrap_value();
if(should_swap()) {
swap_fat_header(&header, NX_UnknownByteOrder);
}
// thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
// off_t arch_offset = (off_t)header_size;
// for(std::size_t i = 0; i < header.nfat_arch; i++) {
// fat_arch arch = load_bytes<fat_arch>(file, arch_offset);
// if(should_swap()) {
// swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
// }
// off_t mach_header_offset = (off_t)arch.offset;
// arch_offset += arch_size;
// std::uint32_t magic = load_bytes<std::uint32_t>(file, mach_header_offset);
// std::cerr<<"xxx: "<<arch.cputype<<" : "<<mhp->cputype<<std::endl;
// std::cerr<<" "<<arch.cpusubtype<<" : "<<static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK)<<std::endl;
// if(
// arch.cputype == mhp->cputype &&
// static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK) == arch.cpusubtype
// ) {
// load_base = mach_header_offset;
// fat_index = i;
// if(is_magic_64(magic)) {
// load_mach<64>(true);
// } else {
// load_mach<32>(true);
// }
// return;
// }
// }
std::vector<fat_arch> fat_arches;
fat_arches.reserve(header.nfat_arch);
off_t arch_offset = (off_t)header_size;
for(std::size_t i = 0; i < header.nfat_arch; i++) {
auto load_arch = load_bytes<fat_arch>(file, arch_offset);
if(!load_arch) {
return load_arch.unwrap_error();
}
fat_arch& arch = load_arch.unwrap_value();
if(should_swap()) {
swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
}
fat_arches.push_back(arch);
arch_offset += arch_size;
}
thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
fat_arch* best = NXFindBestFatArch(
mhp->cputype,
mhp->cpusubtype,
fat_arches.data(),
header.nfat_arch
);
if(best) {
off_t mach_header_offset = (off_t)best->offset;
auto magic = load_bytes<std::uint32_t>(file, mach_header_offset);
if(!magic) {
return magic.unwrap_error();
}
load_base = mach_header_offset;
fat_index = best - fat_arches.data();
if(is_magic_64(magic.unwrap_value())) {
load_mach<64>();
} else {
load_mach<32>();
}
return monostate{};
}
// If this is reached... something went wrong. The cpu we're on wasn't found.
return internal_error("Couldn't find appropriate architecture in fat Mach-O");
}
template<std::size_t Bits>
Result<segment_command_64, internal_error> load_segment_command(std::uint32_t offset) const {
using Segment_Command = typename std::conditional<Bits == 32, segment_command, segment_command_64>::type;
auto load_segment = load_bytes<Segment_Command>(file, offset);
if(!load_segment) {
return load_segment.unwrap_error();
}
Segment_Command& segment = load_segment.unwrap_value();
ASSERT(segment.cmd == LC_SEGMENT_64 || segment.cmd == LC_SEGMENT);
if(should_swap()) {
swap_segment_command(segment);
}
// fields match just u64 instead of u32
segment_command_64 common;
common.cmd = segment.cmd;
common.cmdsize = segment.cmdsize;
static_assert(sizeof common.segname == 16 && sizeof segment.segname == 16, "xx");
memcpy(common.segname, segment.segname, 16);
common.vmaddr = segment.vmaddr;
common.vmsize = segment.vmsize;
common.fileoff = segment.fileoff;
common.filesize = segment.filesize;
common.maxprot = segment.maxprot;
common.initprot = segment.initprot;
common.nsects = segment.nsects;
common.flags = segment.flags;
return common;
}
Result<symtab_command, internal_error> load_symbol_table_command(std::uint32_t offset) const {
auto load_symtab = load_bytes<symtab_command>(file, offset);
if(!load_symtab) {
return load_symtab.unwrap_error();
}
symtab_command& symtab = load_symtab.unwrap_value();
ASSERT(symtab.cmd == LC_SYMTAB);
if(should_swap()) {
swap_symtab_command(&symtab, NX_UnknownByteOrder);
}
return symtab;
}
template<std::size_t Bits>
Result<nlist_64, internal_error> load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const {
using Nlist = typename std::conditional<Bits == 32, struct nlist, struct nlist_64>::type;
uint32_t offset = load_base + symbol_base + index * sizeof(Nlist);
auto load_entry = load_bytes<Nlist>(file, offset);
if(!load_entry) {
return load_entry.unwrap_error();
}
Nlist& entry = load_entry.unwrap_value();
if(should_swap()) {
swap_nlist(entry);
}
// fields match just u64 instead of u32
nlist_64 common;
common.n_un.n_strx = entry.n_un.n_strx;
common.n_type = entry.n_type;
common.n_sect = entry.n_sect;
common.n_desc = entry.n_desc;
common.n_value = entry.n_value;
return common;
}
Result<std::unique_ptr<char[]>, internal_error> load_string_table(std::uint32_t offset, std::uint32_t byte_count) const {
std::unique_ptr<char[]> buffer(new char[byte_count + 1]);
if(std::fseek(file, load_base + offset, SEEK_SET) != 0) {
return internal_error("fseek error while loading mach-o symbol table");
}
if(std::fread(buffer.get(), sizeof(char), byte_count, file) != byte_count) {
return internal_error("fread error while loading mach-o symbol table");
}
buffer[byte_count] = 0; // just out of an abundance of caution
return buffer;
}
bool should_swap() const {
return should_swap_bytes(magic);
}
};
inline Result<bool, internal_error> macho_is_fat(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
} else {
return is_fat_magic(magic.unwrap_value());
}
}
}
}
#pragma GCC diagnostic pop
#endif
#endif