Split a bunch of internal headers into .cpp/.hpp

This commit is contained in:
Jeremy 2024-05-05 16:49:21 -05:00
parent 9275f62fc5
commit da0aa4d5c0
No known key found for this signature in database
GPG Key ID: 19AA8270105E8EB4
16 changed files with 1220 additions and 1064 deletions

View File

@ -203,25 +203,31 @@ target_sources(
target_sources(
${target_name} PRIVATE
# src
src/binary/elf.cpp
src/binary/mach-o.cpp
src/binary/module_base.cpp
src/binary/object.cpp
src/binary/pe.cpp
src/binary/safe_dl.cpp
src/cpptrace.cpp
src/ctrace.cpp
src/demangle/demangle_with_cxxabi.cpp
src/demangle/demangle_with_winapi.cpp
src/demangle/demangle_with_nothing.cpp
src/demangle/demangle_with_winapi.cpp
src/snippets/snippet.cpp
src/symbols/symbols_core.cpp
src/symbols/symbols_with_addr2line.cpp
src/symbols/symbols_with_dbghelp.cpp
src/symbols/symbols_with_dl.cpp
src/symbols/symbols_with_libbacktrace.cpp
src/symbols/symbols_with_libdwarf.cpp
src/symbols/symbols_with_nothing.cpp
src/symbols/symbols_core.cpp
src/unwind/unwind_with_dbghelp.cpp
src/unwind/unwind_with_execinfo.cpp
src/unwind/unwind_with_libunwind.cpp
src/unwind/unwind_with_nothing.cpp
src/unwind/unwind_with_unwind.cpp
src/unwind/unwind_with_winapi.cpp
src/unwind/unwind_with_dbghelp.cpp
src/snippets/snippet.cpp
)
target_include_directories(

100
src/binary/elf.cpp Normal file
View File

@ -0,0 +1,100 @@
#include "elf.hpp"
#if IS_LINUX
#include <array>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <type_traits>
#include <elf.h>
namespace cpptrace {
namespace detail {
template<typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
T elf_byteswap_if_needed(T value, bool elf_is_little) {
if(is_little_endian() == elf_is_little) {
return value;
} else {
return byteswap(value);
}
}
template<std::size_t Bits>
static Result<std::uintptr_t, internal_error> elf_get_module_image_base_from_program_table(
const std::string& object_path,
std::FILE* file,
bool is_little_endian
) {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
using Header = typename std::conditional<Bits == 32, Elf32_Ehdr, Elf64_Ehdr>::type;
using PHeader = typename std::conditional<Bits == 32, Elf32_Phdr, Elf64_Phdr>::type;
auto loaded_header = load_bytes<Header>(file, 0);
if(loaded_header.is_error()) {
return std::move(loaded_header).unwrap_error();
}
const Header& file_header = loaded_header.unwrap_value();
if(file_header.e_ehsize != sizeof(Header)) {
return internal_error("ELF file header size mismatch" + object_path);
}
// PT_PHDR will occur at most once
// Should be somewhat reliable https://stackoverflow.com/q/61568612/15675011
// It should occur at the beginning but may as well loop just in case
for(int i = 0; i < file_header.e_phnum; i++) {
auto loaded_ph = load_bytes<PHeader>(file, file_header.e_phoff + file_header.e_phentsize * i);
if(loaded_ph.is_error()) {
return std::move(loaded_ph).unwrap_error();
}
const PHeader& program_header = loaded_ph.unwrap_value();
if(elf_byteswap_if_needed(program_header.p_type, is_little_endian) == PT_PHDR) {
return elf_byteswap_if_needed(program_header.p_vaddr, is_little_endian) -
elf_byteswap_if_needed(program_header.p_offset, is_little_endian);
}
}
// Apparently some objects like shared objects can end up missing this header. 0 as a base seems correct.
return 0;
}
Result<std::uintptr_t, internal_error> elf_get_module_image_base(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file " + object_path);
}
// Initial checks/metadata
auto magic = load_bytes<std::array<char, 4>>(file, 0);
if(magic.is_error()) {
return std::move(magic).unwrap_error();
}
if(magic.unwrap_value() != (std::array<char, 4>{0x7F, 'E', 'L', 'F'})) {
return internal_error("File is not ELF " + object_path);
}
auto ei_class = load_bytes<std::uint8_t>(file, 4);
if(ei_class.is_error()) {
return std::move(ei_class).unwrap_error();
}
bool is_64 = ei_class.unwrap_value() == 2;
auto ei_data = load_bytes<std::uint8_t>(file, 5);
if(ei_data.is_error()) {
return std::move(ei_data).unwrap_error();
}
bool is_little_endian = ei_data.unwrap_value() == 1;
auto ei_version = load_bytes<std::uint8_t>(file, 6);
if(ei_version.is_error()) {
return std::move(ei_version).unwrap_error();
}
if(ei_version.unwrap_value() != 1) {
return internal_error("Unexpected ELF version " + object_path);
}
// get image base
if(is_64) {
return elf_get_module_image_base_from_program_table<64>(object_path, file, is_little_endian);
} else {
return elf_get_module_image_base_from_program_table<32>(object_path, file, is_little_endian);
}
}
}
}
#endif

View File

@ -5,97 +5,13 @@
#include "../utils/utils.hpp"
#if IS_LINUX
#include <array>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <type_traits>
#include <elf.h>
#include <cstdint>
#include <string>
namespace cpptrace {
namespace detail {
template<typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
T elf_byteswap_if_needed(T value, bool elf_is_little) {
if(is_little_endian() == elf_is_little) {
return value;
} else {
return byteswap(value);
}
}
template<std::size_t Bits>
static Result<std::uintptr_t, internal_error> elf_get_module_image_base_from_program_table(
const std::string& object_path,
std::FILE* file,
bool is_little_endian
) {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
using Header = typename std::conditional<Bits == 32, Elf32_Ehdr, Elf64_Ehdr>::type;
using PHeader = typename std::conditional<Bits == 32, Elf32_Phdr, Elf64_Phdr>::type;
auto loaded_header = load_bytes<Header>(file, 0);
if(loaded_header.is_error()) {
return std::move(loaded_header).unwrap_error();
}
const Header& file_header = loaded_header.unwrap_value();
if(file_header.e_ehsize != sizeof(Header)) {
return internal_error("ELF file header size mismatch" + object_path);
}
// PT_PHDR will occur at most once
// Should be somewhat reliable https://stackoverflow.com/q/61568612/15675011
// It should occur at the beginning but may as well loop just in case
for(int i = 0; i < file_header.e_phnum; i++) {
auto loaded_ph = load_bytes<PHeader>(file, file_header.e_phoff + file_header.e_phentsize * i);
if(loaded_ph.is_error()) {
return std::move(loaded_ph).unwrap_error();
}
const PHeader& program_header = loaded_ph.unwrap_value();
if(elf_byteswap_if_needed(program_header.p_type, is_little_endian) == PT_PHDR) {
return elf_byteswap_if_needed(program_header.p_vaddr, is_little_endian) -
elf_byteswap_if_needed(program_header.p_offset, is_little_endian);
}
}
// Apparently some objects like shared objects can end up missing this header. 0 as a base seems correct.
return 0;
}
static Result<std::uintptr_t, internal_error> elf_get_module_image_base(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file " + object_path);
}
// Initial checks/metadata
auto magic = load_bytes<std::array<char, 4>>(file, 0);
if(magic.is_error()) {
return std::move(magic).unwrap_error();
}
if(magic.unwrap_value() != (std::array<char, 4>{0x7F, 'E', 'L', 'F'})) {
return internal_error("File is not ELF " + object_path);
}
auto ei_class = load_bytes<std::uint8_t>(file, 4);
if(ei_class.is_error()) {
return std::move(ei_class).unwrap_error();
}
bool is_64 = ei_class.unwrap_value() == 2;
auto ei_data = load_bytes<std::uint8_t>(file, 5);
if(ei_data.is_error()) {
return std::move(ei_data).unwrap_error();
}
bool is_little_endian = ei_data.unwrap_value() == 1;
auto ei_version = load_bytes<std::uint8_t>(file, 6);
if(ei_version.is_error()) {
return std::move(ei_version).unwrap_error();
}
if(ei_version.unwrap_value() != 1) {
return internal_error("Unexpected ELF version " + object_path);
}
// get image base
if(is_64) {
return elf_get_module_image_base_from_program_table<64>(object_path, file, is_little_endian);
} else {
return elf_get_module_image_base_from_program_table<32>(object_path, file, is_little_endian);
}
}
Result<std::uintptr_t, internal_error> elf_get_module_image_base(const std::string& object_path);
}
}

641
src/binary/mach-o.cpp Normal file
View File

@ -0,0 +1,641 @@
#include "mach-o.hpp"
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#if IS_APPLE
// A number of mach-o functions are deprecated as of macos 13
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include <cstdio>
#include <cstring>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include <iostream>
#include <iomanip>
#include <mach-o/loader.h>
#include <mach-o/swap.h>
#include <mach-o/fat.h>
#include <crt_externs.h>
#include <mach-o/nlist.h>
#include <mach-o/stab.h>
#include <mach-o/arch.h>
namespace cpptrace {
namespace detail {
bool is_mach_o(std::uint32_t magic) {
switch(magic) {
case FAT_MAGIC:
case FAT_CIGAM:
case MH_MAGIC:
case MH_CIGAM:
case MH_MAGIC_64:
case MH_CIGAM_64:
return true;
default:
return false;
}
}
bool file_is_mach_o(const std::string& object_path) noexcept {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return false;
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(magic) {
return is_mach_o(magic.unwrap_value());
} else {
return false;
}
}
bool is_fat_magic(std::uint32_t magic) {
return magic == FAT_MAGIC || magic == FAT_CIGAM;
}
// Based on https://github.com/AlexDenisov/segment_dumper/blob/master/main.c
// and https://lowlevelbits.org/parsing-mach-o-files/
bool is_magic_64(std::uint32_t magic) {
return magic == MH_MAGIC_64 || magic == MH_CIGAM_64;
}
bool should_swap_bytes(std::uint32_t magic) {
return magic == MH_CIGAM || magic == MH_CIGAM_64 || magic == FAT_CIGAM;
}
void swap_mach_header(mach_header_64& header) {
swap_mach_header_64(&header, NX_UnknownByteOrder);
}
void swap_mach_header(mach_header& header) {
swap_mach_header(&header, NX_UnknownByteOrder);
}
void swap_segment_command(segment_command_64& segment) {
swap_segment_command_64(&segment, NX_UnknownByteOrder);
}
void swap_segment_command(segment_command& segment) {
swap_segment_command(&segment, NX_UnknownByteOrder);
}
void swap_nlist(struct nlist& entry) {
swap_nlist(&entry, 1, NX_UnknownByteOrder);
}
void swap_nlist(struct nlist_64& entry) {
swap_nlist_64(&entry, 1, NX_UnknownByteOrder);
}
#ifdef __LP64__
#define LP(x) x##_64
#else
#define LP(x) x
#endif
Result<const char*, internal_error> mach_o::symtab_info_data::get_string(std::size_t index) const {
if(stringtab && index < symtab.strsize) {
return stringtab.get() + index;
} else {
return internal_error("can't retrieve symbol from symtab");
}
}
Result<monostate, internal_error> mach_o::load() {
if(magic == FAT_MAGIC || magic == FAT_CIGAM) {
return load_fat_mach();
} else {
fat_index = 0;
if(is_magic_64(magic)) {
return load_mach<64>();
} else {
return load_mach<32>();
}
}
}
Result<mach_o, internal_error> mach_o::open_mach_o(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
}
if(!is_mach_o(magic.unwrap_value())) {
return internal_error("File is not mach-o {}", object_path);
}
mach_o obj(std::move(file), object_path, magic.unwrap_value());
auto result = obj.load();
if(result.is_error()) {
return result.unwrap_error();
} else {
return obj;
}
}
Result<std::uintptr_t, internal_error> mach_o::get_text_vmaddr() {
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
if(segment.is_error()) {
return std::move(segment).unwrap_error();
}
if(std::strcmp(segment.unwrap_value().segname, "__TEXT") == 0) {
return segment.unwrap_value().vmaddr;
}
}
}
// somehow no __TEXT section was found...
return internal_error("Couldn't find __TEXT section while parsing Mach-O object");
}
std::size_t mach_o::get_fat_index() const {
VERIFY(fat_index != std::numeric_limits<std::size_t>::max());
return fat_index;
}
void mach_o::print_segments() const {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment_load = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(segment_load.is_error()) {
fprintf(stderr, " error\n");
segment_load.drop_error();
continue;
}
auto& segment = segment_load.unwrap_value();
fprintf(stderr, " cmd %u\n", segment.cmd);
fprintf(stderr, " cmdsize %u\n", segment.cmdsize);
fprintf(stderr, " segname %s\n", segment.segname);
fprintf(stderr, " vmaddr 0x%llx\n", segment.vmaddr);
fprintf(stderr, " vmsize 0x%llx\n", segment.vmsize);
fprintf(stderr, " off 0x%llx\n", segment.fileoff);
fprintf(stderr, " filesize %llu\n", segment.filesize);
fprintf(stderr, " nsects %u\n", segment.nsects);
}
i++;
}
}
Result<std::reference_wrapper<optional<mach_o::symtab_info_data>>, internal_error> mach_o::get_symtab_info() {
if(!symtab_info.has_value() && !tried_to_load_symtab) {
// don't try to load the symtab again if for some reason loading here fails
tried_to_load_symtab = true;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
symtab_info_data info;
auto symtab = load_symbol_table_command(command.file_offset);
if(!symtab) {
return std::move(symtab).unwrap_error();
}
info.symtab = symtab.unwrap_value();
auto string = load_string_table(info.symtab.stroff, info.symtab.strsize);
if(!string) {
return std::move(string).unwrap_error();
}
info.stringtab = std::move(string).unwrap_value();
symtab_info = std::move(info);
break;
}
}
}
return std::reference_wrapper<optional<symtab_info_data>>{symtab_info};
}
void mach_o::print_symbol_table_entry(
const nlist_64& entry,
const std::unique_ptr<char[]>& stringtab,
std::size_t stringsize,
std::size_t j
) const {
const char* type = "";
if(entry.n_type & N_STAB) {
switch(entry.n_type) {
case N_SO: type = "N_SO"; break;
case N_OSO: type = "N_OSO"; break;
case N_BNSYM: type = "N_BNSYM"; break;
case N_ENSYM: type = "N_ENSYM"; break;
case N_FUN: type = "N_FUN"; break;
}
} else if((entry.n_type & N_TYPE) == N_SECT) {
type = "N_SECT";
}
fprintf(
stderr,
"%5llu %8llx %2llx %7s %2llu %4llx %16llx %s\n",
to_ull(j),
to_ull(entry.n_un.n_strx),
to_ull(entry.n_type),
type,
to_ull(entry.n_sect),
to_ull(entry.n_desc),
to_ull(entry.n_value),
stringtab == nullptr
? "Stringtab error"
: entry.n_un.n_strx < stringsize
? stringtab.get() + entry.n_un.n_strx
: "String index out of bounds"
);
}
void mach_o::print_symbol_table() {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
auto symtab_load = load_symbol_table_command(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(symtab_load.is_error()) {
fprintf(stderr, " error\n");
symtab_load.drop_error();
continue;
}
auto& symtab = symtab_load.unwrap_value();
fprintf(stderr, " cmd %llu\n", to_ull(symtab.cmd));
fprintf(stderr, " cmdsize %llu\n", to_ull(symtab.cmdsize));
fprintf(stderr, " symoff 0x%llu\n", to_ull(symtab.symoff));
fprintf(stderr, " nsyms %llu\n", to_ull(symtab.nsyms));
fprintf(stderr, " stroff 0x%llu\n", to_ull(symtab.stroff));
fprintf(stderr, " strsize %llu\n", to_ull(symtab.strsize));
auto stringtab = load_string_table(symtab.stroff, symtab.strsize);
if(!stringtab) {
stringtab.drop_error();
}
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!entry) {
fprintf(stderr, "error loading symtab entry\n");
entry.drop_error();
continue;
}
print_symbol_table_entry(
entry.unwrap_value(),
std::move(stringtab).value_or(std::unique_ptr<char[]>(nullptr)),
symtab.strsize,
j
);
}
}
i++;
}
}
// produce information similar to dsymutil -dump-debug-map
Result<mach_o::debug_map, internal_error> mach_o::get_debug_map() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
debug_map debug_map;
auto symtab_info_res = get_symtab_info();
if(!symtab_info_res) {
return std::move(symtab_info_res).unwrap_error();
}
if(!symtab_info_res.unwrap_value().get()) {
return internal_error("No symtab info");
}
const auto& symtab_info = symtab_info_res.unwrap_value().get().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
std::string current_module;
optional<debug_map_entry> current_function;
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
return std::move(load_entry).unwrap_error();
}
auto& entry = load_entry.unwrap_value();
// entry.n_type & N_STAB indicates symbolic debug info
if(!(entry.n_type & N_STAB)) {
continue;
}
switch(entry.n_type) {
case N_SO:
// pass - these encode path and filename for the module, if applicable
break;
case N_OSO:
{
// sets the module
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
current_module = str.unwrap_value();
}
break;
case N_BNSYM: break; // pass
case N_ENSYM: break; // pass
case N_FUN:
{
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
if(str.unwrap_value()[0] == 0) {
// end of function scope
if(!current_function) { /**/ }
current_function.unwrap().size = entry.n_value;
debug_map[current_module].push_back(std::move(current_function).unwrap());
} else {
current_function = debug_map_entry{};
current_function.unwrap().source_address = entry.n_value;
current_function.unwrap().name = str.unwrap_value();
}
}
break;
}
}
return debug_map;
}
Result<std::vector<mach_o::symbol_entry>, internal_error> mach_o::symbol_table() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
std::vector<symbol_entry> symbols;
auto symtab_info_res = get_symtab_info();
if(!symtab_info_res) {
return std::move(symtab_info_res).unwrap_error();
}
if(!symtab_info_res.unwrap_value().get()) {
return internal_error("No symtab info");
}
const auto& symtab_info = symtab_info_res.unwrap_value().get().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
return std::move(load_entry).unwrap_error();
}
auto& entry = load_entry.unwrap_value();
if(entry.n_type & N_STAB) {
continue;
}
if((entry.n_type & N_TYPE) == N_SECT) {
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
symbols.push_back({
entry.n_value,
str.unwrap_value()
});
}
}
return symbols;
}
// produce information similar to dsymutil -dump-debug-map
void mach_o::print_debug_map(const debug_map& debug_map) {
for(const auto& entry : debug_map) {
std::cout<<entry.first<<": "<< '\n';
for(const auto& symbol : entry.second) {
std::cerr
<< " "
<< symbol.name
<< " "
<< std::hex
<< symbol.source_address
<< " "
<< symbol.size
<< std::dec
<< '\n';
}
}
}
template<std::size_t Bits>
Result<monostate, internal_error> mach_o::load_mach() {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
bits = Bits;
using Mach_Header = typename std::conditional<Bits == 32, mach_header, mach_header_64>::type;
std::size_t header_size = sizeof(Mach_Header);
auto load_header = load_bytes<Mach_Header>(file, load_base);
if(!load_header) {
return load_header.unwrap_error();
}
Mach_Header& header = load_header.unwrap_value();
magic = header.magic;
if(should_swap()) {
swap_mach_header(header);
}
cputype = header.cputype;
cpusubtype = header.cpusubtype;
filetype = header.filetype;
n_load_commands = header.ncmds;
sizeof_load_commands = header.sizeofcmds;
flags = header.flags;
// handle load commands
std::uint32_t ncmds = header.ncmds;
std::uint32_t load_commands_offset = load_base + header_size;
// iterate load commands
std::uint32_t actual_offset = load_commands_offset;
for(std::uint32_t i = 0; i < ncmds; i++) {
auto load_cmd = load_bytes<load_command>(file, actual_offset);
if(!load_cmd) {
return load_cmd.unwrap_error();
}
load_command& cmd = load_cmd.unwrap_value();
if(should_swap()) {
swap_load_command(&cmd, NX_UnknownByteOrder);
}
load_commands.push_back({ actual_offset, cmd.cmd, cmd.cmdsize });
actual_offset += cmd.cmdsize;
}
return monostate{};
}
Result<monostate, internal_error> mach_o::load_fat_mach() {
std::size_t header_size = sizeof(fat_header);
std::size_t arch_size = sizeof(fat_arch);
auto load_header = load_bytes<fat_header>(file, 0);
if(!load_header) {
return load_header.unwrap_error();
}
fat_header& header = load_header.unwrap_value();
if(should_swap()) {
swap_fat_header(&header, NX_UnknownByteOrder);
}
// thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
// off_t arch_offset = (off_t)header_size;
// for(std::size_t i = 0; i < header.nfat_arch; i++) {
// fat_arch arch = load_bytes<fat_arch>(file, arch_offset);
// if(should_swap()) {
// swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
// }
// off_t mach_header_offset = (off_t)arch.offset;
// arch_offset += arch_size;
// std::uint32_t magic = load_bytes<std::uint32_t>(file, mach_header_offset);
// std::cerr<<"xxx: "<<arch.cputype<<" : "<<mhp->cputype<<std::endl;
// std::cerr<<" "<<arch.cpusubtype<<" : "<<static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK)<<std::endl;
// if(
// arch.cputype == mhp->cputype &&
// static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK) == arch.cpusubtype
// ) {
// load_base = mach_header_offset;
// fat_index = i;
// if(is_magic_64(magic)) {
// load_mach<64>(true);
// } else {
// load_mach<32>(true);
// }
// return;
// }
// }
std::vector<fat_arch> fat_arches;
fat_arches.reserve(header.nfat_arch);
off_t arch_offset = (off_t)header_size;
for(std::size_t i = 0; i < header.nfat_arch; i++) {
auto load_arch = load_bytes<fat_arch>(file, arch_offset);
if(!load_arch) {
return load_arch.unwrap_error();
}
fat_arch& arch = load_arch.unwrap_value();
if(should_swap()) {
swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
}
fat_arches.push_back(arch);
arch_offset += arch_size;
}
thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
fat_arch* best = NXFindBestFatArch(
mhp->cputype,
mhp->cpusubtype,
fat_arches.data(),
header.nfat_arch
);
if(best) {
off_t mach_header_offset = (off_t)best->offset;
auto magic = load_bytes<std::uint32_t>(file, mach_header_offset);
if(!magic) {
return magic.unwrap_error();
}
load_base = mach_header_offset;
fat_index = best - fat_arches.data();
if(is_magic_64(magic.unwrap_value())) {
load_mach<64>();
} else {
load_mach<32>();
}
return monostate{};
}
// If this is reached... something went wrong. The cpu we're on wasn't found.
return internal_error("Couldn't find appropriate architecture in fat Mach-O");
}
template<std::size_t Bits>
Result<segment_command_64, internal_error> mach_o::load_segment_command(std::uint32_t offset) const {
using Segment_Command = typename std::conditional<Bits == 32, segment_command, segment_command_64>::type;
auto load_segment = load_bytes<Segment_Command>(file, offset);
if(!load_segment) {
return load_segment.unwrap_error();
}
Segment_Command& segment = load_segment.unwrap_value();
ASSERT(segment.cmd == LC_SEGMENT_64 || segment.cmd == LC_SEGMENT);
if(should_swap()) {
swap_segment_command(segment);
}
// fields match just u64 instead of u32
segment_command_64 common;
common.cmd = segment.cmd;
common.cmdsize = segment.cmdsize;
static_assert(sizeof common.segname == 16 && sizeof segment.segname == 16, "xx");
memcpy(common.segname, segment.segname, 16);
common.vmaddr = segment.vmaddr;
common.vmsize = segment.vmsize;
common.fileoff = segment.fileoff;
common.filesize = segment.filesize;
common.maxprot = segment.maxprot;
common.initprot = segment.initprot;
common.nsects = segment.nsects;
common.flags = segment.flags;
return common;
}
Result<symtab_command, internal_error> mach_o::load_symbol_table_command(std::uint32_t offset) const {
auto load_symtab = load_bytes<symtab_command>(file, offset);
if(!load_symtab) {
return load_symtab.unwrap_error();
}
symtab_command& symtab = load_symtab.unwrap_value();
ASSERT(symtab.cmd == LC_SYMTAB);
if(should_swap()) {
swap_symtab_command(&symtab, NX_UnknownByteOrder);
}
return symtab;
}
template<std::size_t Bits>
Result<nlist_64, internal_error> mach_o::load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const {
using Nlist = typename std::conditional<Bits == 32, struct nlist, struct nlist_64>::type;
uint32_t offset = load_base + symbol_base + index * sizeof(Nlist);
auto load_entry = load_bytes<Nlist>(file, offset);
if(!load_entry) {
return load_entry.unwrap_error();
}
Nlist& entry = load_entry.unwrap_value();
if(should_swap()) {
swap_nlist(entry);
}
// fields match just u64 instead of u32
nlist_64 common;
common.n_un.n_strx = entry.n_un.n_strx;
common.n_type = entry.n_type;
common.n_sect = entry.n_sect;
common.n_desc = entry.n_desc;
common.n_value = entry.n_value;
return common;
}
Result<std::unique_ptr<char[]>, internal_error> mach_o::load_string_table(std::uint32_t offset, std::uint32_t byte_count) const {
std::unique_ptr<char[]> buffer(new char[byte_count + 1]);
if(std::fseek(file, load_base + offset, SEEK_SET) != 0) {
return internal_error("fseek error while loading mach-o symbol table");
}
if(std::fread(buffer.get(), sizeof(char), byte_count, file) != byte_count) {
return internal_error("fread error while loading mach-o symbol table");
}
buffer[byte_count] = 0; // just out of an abundance of caution
return buffer;
}
bool mach_o::should_swap() const {
return should_swap_bytes(magic);
}
Result<bool, internal_error> macho_is_fat(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
} else {
return is_fat_magic(magic.unwrap_value());
}
}
}
}
#pragma GCC diagnostic pop
#endif

View File

@ -6,100 +6,20 @@
#if IS_APPLE
// A number of mach-o functions are deprecated as of macos 13
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include <cstdio>
#include <cstring>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include <iostream>
#include <iomanip>
#include <mach-o/loader.h>
#include <mach-o/swap.h>
#include <mach-o/fat.h>
#include <crt_externs.h>
#include <mach-o/nlist.h>
#include <mach-o/stab.h>
#include <mach-o/arch.h>
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
namespace cpptrace {
namespace detail {
inline bool is_mach_o(std::uint32_t magic) {
switch(magic) {
case FAT_MAGIC:
case FAT_CIGAM:
case MH_MAGIC:
case MH_CIGAM:
case MH_MAGIC_64:
case MH_CIGAM_64:
return true;
default:
return false;
}
}
inline bool file_is_mach_o(const std::string& object_path) noexcept {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return false;
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(magic) {
return is_mach_o(magic.unwrap_value());
} else {
return false;
}
}
inline bool is_fat_magic(std::uint32_t magic) {
return magic == FAT_MAGIC || magic == FAT_CIGAM;
}
// Based on https://github.com/AlexDenisov/segment_dumper/blob/master/main.c
// and https://lowlevelbits.org/parsing-mach-o-files/
inline bool is_magic_64(std::uint32_t magic) {
return magic == MH_MAGIC_64 || magic == MH_CIGAM_64;
}
inline bool should_swap_bytes(std::uint32_t magic) {
return magic == MH_CIGAM || magic == MH_CIGAM_64 || magic == FAT_CIGAM;
}
inline void swap_mach_header(mach_header_64& header) {
swap_mach_header_64(&header, NX_UnknownByteOrder);
}
inline void swap_mach_header(mach_header& header) {
swap_mach_header(&header, NX_UnknownByteOrder);
}
inline void swap_segment_command(segment_command_64& segment) {
swap_segment_command_64(&segment, NX_UnknownByteOrder);
}
inline void swap_segment_command(segment_command& segment) {
swap_segment_command(&segment, NX_UnknownByteOrder);
}
inline void swap_nlist(struct nlist& entry) {
swap_nlist(&entry, 1, NX_UnknownByteOrder);
}
inline void swap_nlist(struct nlist_64& entry) {
swap_nlist_64(&entry, 1, NX_UnknownByteOrder);
}
#ifdef __LP64__
#define LP(x) x##_64
#else
#define LP(x) x
#endif
bool file_is_mach_o(const std::string& object_path) noexcept;
struct load_command_entry {
std::uint32_t file_offset;
@ -127,13 +47,7 @@ namespace detail {
struct symtab_info_data {
symtab_command symtab;
std::unique_ptr<char[]> stringtab;
Result<const char*, internal_error> get_string(std::size_t index) const {
if(stringtab && index < symtab.strsize) {
return stringtab.get() + index;
} else {
return internal_error("can't retrieve symbol from symtab");
}
}
Result<const char*, internal_error> get_string(std::size_t index) const;
};
bool tried_to_load_symtab = false;
@ -148,197 +62,30 @@ namespace detail {
object_path(object_path),
magic(magic) {}
Result<monostate, internal_error> load() {
if(magic == FAT_MAGIC || magic == FAT_CIGAM) {
return load_fat_mach();
} else {
fat_index = 0;
if(is_magic_64(magic)) {
return load_mach<64>();
} else {
return load_mach<32>();
}
}
}
Result<monostate, internal_error> load();
public:
static inline NODISCARD Result<mach_o, internal_error> open_mach_o(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
}
if(!is_mach_o(magic.unwrap_value())) {
return internal_error("File is not mach-o {}", object_path);
}
mach_o obj(std::move(file), object_path, magic.unwrap_value());
auto result = obj.load();
if(result.is_error()) {
return result.unwrap_error();
} else {
return obj;
}
}
static NODISCARD Result<mach_o, internal_error> open_mach_o(const std::string& object_path);
mach_o(mach_o&&) = default;
~mach_o() = default;
Result<std::uintptr_t, internal_error> get_text_vmaddr() {
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
if(segment.is_error()) {
return std::move(segment).unwrap_error();
}
if(std::strcmp(segment.unwrap_value().segname, "__TEXT") == 0) {
return segment.unwrap_value().vmaddr;
}
}
}
// somehow no __TEXT section was found...
return internal_error("Couldn't find __TEXT section while parsing Mach-O object");
}
Result<std::uintptr_t, internal_error> get_text_vmaddr();
std::size_t get_fat_index() const {
VERIFY(fat_index != std::numeric_limits<std::size_t>::max());
return fat_index;
}
std::size_t get_fat_index() const;
void print_segments() const {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment_load = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(segment_load.is_error()) {
fprintf(stderr, " error\n");
segment_load.drop_error();
continue;
}
auto& segment = segment_load.unwrap_value();
fprintf(stderr, " cmd %u\n", segment.cmd);
fprintf(stderr, " cmdsize %u\n", segment.cmdsize);
fprintf(stderr, " segname %s\n", segment.segname);
fprintf(stderr, " vmaddr 0x%llx\n", segment.vmaddr);
fprintf(stderr, " vmsize 0x%llx\n", segment.vmsize);
fprintf(stderr, " off 0x%llx\n", segment.fileoff);
fprintf(stderr, " filesize %llu\n", segment.filesize);
fprintf(stderr, " nsects %u\n", segment.nsects);
}
i++;
}
}
void print_segments() const;
Result<std::reference_wrapper<optional<symtab_info_data>>, internal_error> get_symtab_info() {
if(!symtab_info.has_value() && !tried_to_load_symtab) {
// don't try to load the symtab again if for some reason loading here fails
tried_to_load_symtab = true;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
symtab_info_data info;
auto symtab = load_symbol_table_command(command.file_offset);
if(!symtab) {
return std::move(symtab).unwrap_error();
}
info.symtab = symtab.unwrap_value();
auto string = load_string_table(info.symtab.stroff, info.symtab.strsize);
if(!string) {
return std::move(string).unwrap_error();
}
info.stringtab = std::move(string).unwrap_value();
symtab_info = std::move(info);
break;
}
}
}
return std::reference_wrapper<optional<symtab_info_data>>{symtab_info};
}
Result<std::reference_wrapper<optional<symtab_info_data>>, internal_error> get_symtab_info();
void print_symbol_table_entry(
const nlist_64& entry,
const std::unique_ptr<char[]>& stringtab,
std::size_t stringsize,
std::size_t j
) const {
const char* type = "";
if(entry.n_type & N_STAB) {
switch(entry.n_type) {
case N_SO: type = "N_SO"; break;
case N_OSO: type = "N_OSO"; break;
case N_BNSYM: type = "N_BNSYM"; break;
case N_ENSYM: type = "N_ENSYM"; break;
case N_FUN: type = "N_FUN"; break;
}
} else if((entry.n_type & N_TYPE) == N_SECT) {
type = "N_SECT";
}
fprintf(
stderr,
"%5llu %8llx %2llx %7s %2llu %4llx %16llx %s\n",
to_ull(j),
to_ull(entry.n_un.n_strx),
to_ull(entry.n_type),
type,
to_ull(entry.n_sect),
to_ull(entry.n_desc),
to_ull(entry.n_value),
stringtab == nullptr
? "Stringtab error"
: entry.n_un.n_strx < stringsize
? stringtab.get() + entry.n_un.n_strx
: "String index out of bounds"
);
}
) const;
void print_symbol_table() {
int i = 0;
for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) {
auto symtab_load = load_symbol_table_command(command.file_offset);
fprintf(stderr, "Load command %d\n", i);
if(symtab_load.is_error()) {
fprintf(stderr, " error\n");
symtab_load.drop_error();
continue;
}
auto& symtab = symtab_load.unwrap_value();
fprintf(stderr, " cmd %llu\n", to_ull(symtab.cmd));
fprintf(stderr, " cmdsize %llu\n", to_ull(symtab.cmdsize));
fprintf(stderr, " symoff 0x%llu\n", to_ull(symtab.symoff));
fprintf(stderr, " nsyms %llu\n", to_ull(symtab.nsyms));
fprintf(stderr, " stroff 0x%llu\n", to_ull(symtab.stroff));
fprintf(stderr, " strsize %llu\n", to_ull(symtab.strsize));
auto stringtab = load_string_table(symtab.stroff, symtab.strsize);
if(!stringtab) {
stringtab.drop_error();
}
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!entry) {
fprintf(stderr, "error loading symtab entry\n");
entry.drop_error();
continue;
}
print_symbol_table_entry(
entry.unwrap_value(),
std::move(stringtab).value_or(std::unique_ptr<char[]>(nullptr)),
symtab.strsize,
j
);
}
}
i++;
}
}
void print_symbol_table();
struct debug_map_entry {
uint64_t source_address;
@ -355,349 +102,36 @@ namespace detail {
using debug_map = std::unordered_map<std::string, std::vector<debug_map_entry>>;
// produce information similar to dsymutil -dump-debug-map
Result<debug_map, internal_error> get_debug_map() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
debug_map debug_map;
auto symtab_info_res = get_symtab_info();
if(!symtab_info_res) {
return std::move(symtab_info_res).unwrap_error();
}
if(!symtab_info_res.unwrap_value().get()) {
return internal_error("No symtab info");
}
const auto& symtab_info = symtab_info_res.unwrap_value().get().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
std::string current_module;
optional<debug_map_entry> current_function;
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
return std::move(load_entry).unwrap_error();
}
auto& entry = load_entry.unwrap_value();
// entry.n_type & N_STAB indicates symbolic debug info
if(!(entry.n_type & N_STAB)) {
continue;
}
switch(entry.n_type) {
case N_SO:
// pass - these encode path and filename for the module, if applicable
break;
case N_OSO:
{
// sets the module
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
current_module = str.unwrap_value();
}
break;
case N_BNSYM: break; // pass
case N_ENSYM: break; // pass
case N_FUN:
{
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
if(str.unwrap_value()[0] == 0) {
// end of function scope
if(!current_function) { /**/ }
current_function.unwrap().size = entry.n_value;
debug_map[current_module].push_back(std::move(current_function).unwrap());
} else {
current_function = debug_map_entry{};
current_function.unwrap().source_address = entry.n_value;
current_function.unwrap().name = str.unwrap_value();
}
}
break;
}
}
return debug_map;
}
Result<debug_map, internal_error> get_debug_map();
Result<std::vector<symbol_entry>, internal_error> symbol_table() {
// we have a bunch of symbols in our binary we need to pair up with symbols from various .o files
// first collect symbols and the objects they come from
std::vector<symbol_entry> symbols;
auto symtab_info_res = get_symtab_info();
if(!symtab_info_res) {
return std::move(symtab_info_res).unwrap_error();
}
if(!symtab_info_res.unwrap_value().get()) {
return internal_error("No symtab info");
}
const auto& symtab_info = symtab_info_res.unwrap_value().get().unwrap();
const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account?
for(std::size_t j = 0; j < symtab.nsyms; j++) {
auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
return std::move(load_entry).unwrap_error();
}
auto& entry = load_entry.unwrap_value();
if(entry.n_type & N_STAB) {
continue;
}
if((entry.n_type & N_TYPE) == N_SECT) {
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
return std::move(str).unwrap_error();
}
symbols.push_back({
entry.n_value,
str.unwrap_value()
});
}
}
return symbols;
}
Result<std::vector<symbol_entry>, internal_error> symbol_table();
// produce information similar to dsymutil -dump-debug-map
static void print_debug_map(const debug_map& debug_map) {
for(const auto& entry : debug_map) {
std::cout<<entry.first<<": "<< '\n';
for(const auto& symbol : entry.second) {
std::cerr
<< " "
<< symbol.name
<< " "
<< std::hex
<< symbol.source_address
<< " "
<< symbol.size
<< std::dec
<< '\n';
}
}
}
static void print_debug_map(const debug_map& debug_map);
private:
template<std::size_t Bits>
Result<monostate, internal_error> load_mach() {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
bits = Bits;
using Mach_Header = typename std::conditional<Bits == 32, mach_header, mach_header_64>::type;
std::size_t header_size = sizeof(Mach_Header);
auto load_header = load_bytes<Mach_Header>(file, load_base);
if(!load_header) {
return load_header.unwrap_error();
}
Mach_Header& header = load_header.unwrap_value();
magic = header.magic;
if(should_swap()) {
swap_mach_header(header);
}
cputype = header.cputype;
cpusubtype = header.cpusubtype;
filetype = header.filetype;
n_load_commands = header.ncmds;
sizeof_load_commands = header.sizeofcmds;
flags = header.flags;
// handle load commands
std::uint32_t ncmds = header.ncmds;
std::uint32_t load_commands_offset = load_base + header_size;
// iterate load commands
std::uint32_t actual_offset = load_commands_offset;
for(std::uint32_t i = 0; i < ncmds; i++) {
auto load_cmd = load_bytes<load_command>(file, actual_offset);
if(!load_cmd) {
return load_cmd.unwrap_error();
}
load_command& cmd = load_cmd.unwrap_value();
if(should_swap()) {
swap_load_command(&cmd, NX_UnknownByteOrder);
}
load_commands.push_back({ actual_offset, cmd.cmd, cmd.cmdsize });
actual_offset += cmd.cmdsize;
}
return monostate{};
}
Result<monostate, internal_error> load_mach();
Result<monostate, internal_error> load_fat_mach() {
std::size_t header_size = sizeof(fat_header);
std::size_t arch_size = sizeof(fat_arch);
auto load_header = load_bytes<fat_header>(file, 0);
if(!load_header) {
return load_header.unwrap_error();
}
fat_header& header = load_header.unwrap_value();
if(should_swap()) {
swap_fat_header(&header, NX_UnknownByteOrder);
}
// thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
// off_t arch_offset = (off_t)header_size;
// for(std::size_t i = 0; i < header.nfat_arch; i++) {
// fat_arch arch = load_bytes<fat_arch>(file, arch_offset);
// if(should_swap()) {
// swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
// }
// off_t mach_header_offset = (off_t)arch.offset;
// arch_offset += arch_size;
// std::uint32_t magic = load_bytes<std::uint32_t>(file, mach_header_offset);
// std::cerr<<"xxx: "<<arch.cputype<<" : "<<mhp->cputype<<std::endl;
// std::cerr<<" "<<arch.cpusubtype<<" : "<<static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK)<<std::endl;
// if(
// arch.cputype == mhp->cputype &&
// static_cast<cpu_subtype_t>(mhp->cpusubtype & ~CPU_SUBTYPE_MASK) == arch.cpusubtype
// ) {
// load_base = mach_header_offset;
// fat_index = i;
// if(is_magic_64(magic)) {
// load_mach<64>(true);
// } else {
// load_mach<32>(true);
// }
// return;
// }
// }
std::vector<fat_arch> fat_arches;
fat_arches.reserve(header.nfat_arch);
off_t arch_offset = (off_t)header_size;
for(std::size_t i = 0; i < header.nfat_arch; i++) {
auto load_arch = load_bytes<fat_arch>(file, arch_offset);
if(!load_arch) {
return load_arch.unwrap_error();
}
fat_arch& arch = load_arch.unwrap_value();
if(should_swap()) {
swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
}
fat_arches.push_back(arch);
arch_offset += arch_size;
}
thread_local static struct LP(mach_header)* mhp = _NSGetMachExecuteHeader();
fat_arch* best = NXFindBestFatArch(
mhp->cputype,
mhp->cpusubtype,
fat_arches.data(),
header.nfat_arch
);
if(best) {
off_t mach_header_offset = (off_t)best->offset;
auto magic = load_bytes<std::uint32_t>(file, mach_header_offset);
if(!magic) {
return magic.unwrap_error();
}
load_base = mach_header_offset;
fat_index = best - fat_arches.data();
if(is_magic_64(magic.unwrap_value())) {
load_mach<64>();
} else {
load_mach<32>();
}
return monostate{};
}
// If this is reached... something went wrong. The cpu we're on wasn't found.
return internal_error("Couldn't find appropriate architecture in fat Mach-O");
}
Result<monostate, internal_error> load_fat_mach();
template<std::size_t Bits>
Result<segment_command_64, internal_error> load_segment_command(std::uint32_t offset) const {
using Segment_Command = typename std::conditional<Bits == 32, segment_command, segment_command_64>::type;
auto load_segment = load_bytes<Segment_Command>(file, offset);
if(!load_segment) {
return load_segment.unwrap_error();
}
Segment_Command& segment = load_segment.unwrap_value();
ASSERT(segment.cmd == LC_SEGMENT_64 || segment.cmd == LC_SEGMENT);
if(should_swap()) {
swap_segment_command(segment);
}
// fields match just u64 instead of u32
segment_command_64 common;
common.cmd = segment.cmd;
common.cmdsize = segment.cmdsize;
static_assert(sizeof common.segname == 16 && sizeof segment.segname == 16, "xx");
memcpy(common.segname, segment.segname, 16);
common.vmaddr = segment.vmaddr;
common.vmsize = segment.vmsize;
common.fileoff = segment.fileoff;
common.filesize = segment.filesize;
common.maxprot = segment.maxprot;
common.initprot = segment.initprot;
common.nsects = segment.nsects;
common.flags = segment.flags;
return common;
}
Result<segment_command_64, internal_error> load_segment_command(std::uint32_t offset) const;
Result<symtab_command, internal_error> load_symbol_table_command(std::uint32_t offset) const {
auto load_symtab = load_bytes<symtab_command>(file, offset);
if(!load_symtab) {
return load_symtab.unwrap_error();
}
symtab_command& symtab = load_symtab.unwrap_value();
ASSERT(symtab.cmd == LC_SYMTAB);
if(should_swap()) {
swap_symtab_command(&symtab, NX_UnknownByteOrder);
}
return symtab;
}
Result<symtab_command, internal_error> load_symbol_table_command(std::uint32_t offset) const;
template<std::size_t Bits>
Result<nlist_64, internal_error> load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const {
using Nlist = typename std::conditional<Bits == 32, struct nlist, struct nlist_64>::type;
uint32_t offset = load_base + symbol_base + index * sizeof(Nlist);
auto load_entry = load_bytes<Nlist>(file, offset);
if(!load_entry) {
return load_entry.unwrap_error();
}
Nlist& entry = load_entry.unwrap_value();
if(should_swap()) {
swap_nlist(entry);
}
// fields match just u64 instead of u32
nlist_64 common;
common.n_un.n_strx = entry.n_un.n_strx;
common.n_type = entry.n_type;
common.n_sect = entry.n_sect;
common.n_desc = entry.n_desc;
common.n_value = entry.n_value;
return common;
}
Result<nlist_64, internal_error> load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const;
Result<std::unique_ptr<char[]>, internal_error> load_string_table(std::uint32_t offset, std::uint32_t byte_count) const {
std::unique_ptr<char[]> buffer(new char[byte_count + 1]);
if(std::fseek(file, load_base + offset, SEEK_SET) != 0) {
return internal_error("fseek error while loading mach-o symbol table");
}
if(std::fread(buffer.get(), sizeof(char), byte_count, file) != byte_count) {
return internal_error("fread error while loading mach-o symbol table");
}
buffer[byte_count] = 0; // just out of an abundance of caution
return buffer;
}
Result<std::unique_ptr<char[]>, internal_error> load_string_table(std::uint32_t offset, std::uint32_t byte_count) const;
bool should_swap() const {
return should_swap_bytes(magic);
}
bool should_swap() const;
};
inline Result<bool, internal_error> macho_is_fat(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
} else {
return is_fat_magic(magic.unwrap_value());
}
}
Result<bool, internal_error> macho_is_fat(const std::string& object_path);
}
}
#pragma GCC diagnostic pop
#endif
#endif

View File

@ -0,0 +1,95 @@
#include "module_base.hpp"
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#if IS_APPLE
#include "mach-o.hpp"
#else
#include "elf.hpp"
#endif
#elif IS_WINDOWS
#include <windows.h>
#include "pe.hpp"
#endif
namespace cpptrace {
namespace detail {
#if IS_LINUX
Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto base = elf_get_module_image_base(object_path);
// TODO: Cache the error
if(base.is_error()) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#elif IS_APPLE
Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
// We have to parse the Mach-O to find the offset of the text section.....
// I don't know how addresses are handled if there is more than one __TEXT load command. I'm assuming for
// now that there is only one, and I'm using only the first section entry within that load command.
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto obj = mach_o::open_mach_o(object_path);
// TODO: Cache the error
if(!obj) {
return obj.unwrap_error();
}
auto base = obj.unwrap_value().get_text_vmaddr();
if(!base) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#else // Windows
Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto base = pe_get_module_image_base(object_path);
// TODO: Cache the error
if(!base) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#endif
}
}

View File

@ -4,94 +4,12 @@
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#include <cstdint>
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#if IS_APPLE
#include "mach-o.hpp"
#else
#include "elf.hpp"
#endif
#elif IS_WINDOWS
#include <windows.h>
#include "pe.hpp"
#endif
namespace cpptrace {
namespace detail {
#if IS_LINUX
inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto base = elf_get_module_image_base(object_path);
// TODO: Cache the error
if(base.is_error()) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#elif IS_APPLE
inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
// We have to parse the Mach-O to find the offset of the text section.....
// I don't know how addresses are handled if there is more than one __TEXT load command. I'm assuming for
// now that there is only one, and I'm using only the first section entry within that load command.
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto obj = mach_o::open_mach_o(object_path);
// TODO: Cache the error
if(!obj) {
return obj.unwrap_error();
}
auto base = obj.unwrap_value().get_text_vmaddr();
if(!base) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#else // Windows
inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache;
auto it = cache.find(object_path);
if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation
auto base = pe_get_module_image_base(object_path);
// TODO: Cache the error
if(!base) {
return std::move(base).unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base;
} else {
return it->second;
}
}
#endif
Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path);
}
}

172
src/binary/object.cpp Normal file
View File

@ -0,0 +1,172 @@
#include "object.hpp"
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#include "module_base.hpp"
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#if IS_LINUX
#include <link.h> // needed for dladdr1's link_map info
#endif
#elif IS_WINDOWS
#include <windows.h>
#endif
namespace cpptrace {
namespace detail {
#if IS_LINUX
std::string resolve_l_name(const char* l_name) {
if(l_name != nullptr && l_name[0] != 0) {
return l_name;
} else {
// empty l_name, this means it's the currently running executable
// TODO: Caching and proper handling
char buffer[CPPTRACE_PATH_MAX + 1]{};
auto res = readlink("/proc/self/exe", buffer, CPPTRACE_PATH_MAX);
if(res == -1) {
return ""; // TODO
} else {
return buffer;
}
}
}
#ifdef CPPTRACE_HAS_DL_FIND_OBJECT // we don't even check for this on apple
object_frame get_frame_object_info(frame_ptr address) {
// Use _dl_find_object when we can, it's orders of magnitude faster
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
dl_find_object result;
if(_dl_find_object(reinterpret_cast<void*>(address), &result) == 0) { // thread safe
frame.object_path = resolve_l_name(result.dlfo_link_map->l_name);
frame.object_address = address - to_frame_ptr(result.dlfo_link_map->l_addr);
}
return frame;
}
#else
// dladdr queries are needed to get pre-ASLR addresses and targets to run addr2line on
object_frame get_frame_object_info(frame_ptr address) {
// reference: https://github.com/bminor/glibc/blob/master/debug/backtracesyms.c
// https://github.com/bminor/glibc/blob/91695ee4598b39d181ab8df579b888a8863c4cab/elf/dl-addr.c#L26
Dl_info info;
link_map* link_map_info;
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
if(
// thread safe
dladdr1(reinterpret_cast<void*>(address), &info, reinterpret_cast<void**>(&link_map_info), RTLD_DL_LINKMAP)
) {
frame.object_path = resolve_l_name(link_map_info->l_name);
auto base = get_module_image_base(frame.object_path);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(info.dli_fbase)
+ base.unwrap_value();
} else {
base.drop_error();
}
}
return frame;
}
#endif
#elif IS_APPLE
// macos doesn't have dladdr1 but it seems its dli_fname behaves more sensibly?
// dladdr queries are needed to get pre-ASLR addresses and targets to run addr2line on
object_frame get_frame_object_info(frame_ptr address) {
// reference: https://github.com/bminor/glibc/blob/master/debug/backtracesyms.c
Dl_info info;
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
if(dladdr(reinterpret_cast<void*>(address), &info)) { // thread safe
frame.object_path = info.dli_fname;
auto base = get_module_image_base(info.dli_fname);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(info.dli_fbase)
+ base.unwrap_value();
} else {
base.drop_error();
}
}
return frame;
}
#else
std::string get_module_name(HMODULE handle) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<HMODULE, std::string> cache;
auto it = cache.find(handle);
if(it == cache.end()) {
char path[MAX_PATH];
if(GetModuleFileNameA(handle, path, sizeof(path))) {
///std::fprintf(stderr, "path: %s base: %p\n", path, handle);
cache.insert(it, {handle, path});
return path;
} else {
std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what());
cache.insert(it, {handle, ""});
return "";
}
} else {
return it->second;
}
}
object_frame get_frame_object_info(frame_ptr address) {
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
HMODULE handle;
// Multithread safe as long as another thread doesn't come along and free the module
if(GetModuleHandleExA(
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
reinterpret_cast<const char*>(address),
&handle
)) {
frame.object_path = get_module_name(handle);
auto base = get_module_image_base(frame.object_path);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(handle)
+ base.unwrap_value();
} else {
base.drop_error();
}
} else {
std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what());
}
return frame;
}
#endif
std::vector<object_frame> get_frames_object_info(const std::vector<frame_ptr>& addresses) {
std::vector<object_frame> frames;
frames.reserve(addresses.size());
for(const frame_ptr address : addresses) {
frames.push_back(get_frame_object_info(address));
}
return frames;
}
object_frame resolve_safe_object_frame(const safe_object_frame& frame) {
auto base = get_module_image_base(frame.object_path);
if(base.is_error()) {
throw base.unwrap_error(); // This throw is intentional
}
return {
frame.raw_address,
frame.address_relative_to_object_start + base.unwrap_value(),
frame.object_path
};
}
}
}

View File

@ -7,168 +7,14 @@
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#if IS_LINUX
#include <link.h> // needed for dladdr1's link_map info
#endif
#elif IS_WINDOWS
#include <windows.h>
#endif
namespace cpptrace {
namespace detail {
#if IS_LINUX
inline std::string resolve_l_name(const char* l_name) {
if(l_name != nullptr && l_name[0] != 0) {
return l_name;
} else {
// empty l_name, this means it's the currently running executable
// TODO: Caching and proper handling
char buffer[CPPTRACE_PATH_MAX + 1]{};
auto res = readlink("/proc/self/exe", buffer, CPPTRACE_PATH_MAX);
if(res == -1) {
return ""; // TODO
} else {
return buffer;
}
}
}
#ifdef CPPTRACE_HAS_DL_FIND_OBJECT // we don't even check for this on apple
inline object_frame get_frame_object_info(frame_ptr address) {
// Use _dl_find_object when we can, it's orders of magnitude faster
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
dl_find_object result;
if(_dl_find_object(reinterpret_cast<void*>(address), &result) == 0) { // thread safe
frame.object_path = resolve_l_name(result.dlfo_link_map->l_name);
frame.object_address = address - to_frame_ptr(result.dlfo_link_map->l_addr);
}
return frame;
}
#else
// dladdr queries are needed to get pre-ASLR addresses and targets to run addr2line on
inline object_frame get_frame_object_info(frame_ptr address) {
// reference: https://github.com/bminor/glibc/blob/master/debug/backtracesyms.c
// https://github.com/bminor/glibc/blob/91695ee4598b39d181ab8df579b888a8863c4cab/elf/dl-addr.c#L26
Dl_info info;
link_map* link_map_info;
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
if(
// thread safe
dladdr1(reinterpret_cast<void*>(address), &info, reinterpret_cast<void**>(&link_map_info), RTLD_DL_LINKMAP)
) {
frame.object_path = resolve_l_name(link_map_info->l_name);
auto base = get_module_image_base(frame.object_path);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(info.dli_fbase)
+ base.unwrap_value();
} else {
base.drop_error();
}
}
return frame;
}
#endif
#elif IS_APPLE
// macos doesn't have dladdr1 but it seems its dli_fname behaves more sensibly?
// dladdr queries are needed to get pre-ASLR addresses and targets to run addr2line on
inline object_frame get_frame_object_info(frame_ptr address) {
// reference: https://github.com/bminor/glibc/blob/master/debug/backtracesyms.c
Dl_info info;
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
if(dladdr(reinterpret_cast<void*>(address), &info)) { // thread safe
frame.object_path = info.dli_fname;
auto base = get_module_image_base(info.dli_fname);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(info.dli_fbase)
+ base.unwrap_value();
} else {
base.drop_error();
}
}
return frame;
}
#else
inline std::string get_module_name(HMODULE handle) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<HMODULE, std::string> cache;
auto it = cache.find(handle);
if(it == cache.end()) {
char path[MAX_PATH];
if(GetModuleFileNameA(handle, path, sizeof(path))) {
///std::fprintf(stderr, "path: %s base: %p\n", path, handle);
cache.insert(it, {handle, path});
return path;
} else {
std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what());
cache.insert(it, {handle, ""});
return "";
}
} else {
return it->second;
}
}
object_frame get_frame_object_info(frame_ptr address);
inline object_frame get_frame_object_info(frame_ptr address) {
object_frame frame;
frame.raw_address = address;
frame.object_address = 0;
HMODULE handle;
// Multithread safe as long as another thread doesn't come along and free the module
if(GetModuleHandleExA(
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
reinterpret_cast<const char*>(address),
&handle
)) {
frame.object_path = get_module_name(handle);
auto base = get_module_image_base(frame.object_path);
if(base.has_value()) {
frame.object_address = address
- reinterpret_cast<std::uintptr_t>(handle)
+ base.unwrap_value();
} else {
base.drop_error();
}
} else {
std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what());
}
return frame;
}
#endif
std::vector<object_frame> get_frames_object_info(const std::vector<frame_ptr>& addresses);
inline std::vector<object_frame> get_frames_object_info(const std::vector<frame_ptr>& addresses) {
std::vector<object_frame> frames;
frames.reserve(addresses.size());
for(const frame_ptr address : addresses) {
frames.push_back(get_frame_object_info(address));
}
return frames;
}
inline object_frame resolve_safe_object_frame(const safe_object_frame& frame) {
auto base = get_module_image_base(frame.object_path);
if(base.is_error()) {
throw base.unwrap_error(); // This throw is intentional
}
return {
frame.raw_address,
frame.address_relative_to_object_start + base.unwrap_value(),
frame.object_path
};
}
object_frame resolve_safe_object_frame(const safe_object_frame& frame);
}
}

95
src/binary/pe.cpp Normal file
View File

@ -0,0 +1,95 @@
#include "pe.hpp"
#include "../utils/common.hpp"
#include "../utils/error.hpp"
#include "../utils/utils.hpp"
#if IS_WINDOWS
#include <array>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <string>
#include <windows.h>
namespace cpptrace {
namespace detail {
template<typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
T pe_byteswap_if_needed(T value) {
// PE header values are little endian, I think dos e_lfanew should be too
if(!is_little_endian()) {
return byteswap(value);
} else {
return value;
}
}
Result<std::uintptr_t, internal_error> pe_get_module_image_base(const std::string& object_path) {
// https://drive.google.com/file/d/0B3_wGJkuWLytbnIxY1J5WUs4MEk/view?pli=1&resourcekey=0-n5zZ2UW39xVTH8ZSu6C2aQ
// https://0xrick.github.io/win-internals/pe3/
// Endianness should always be little for dos and pe headers
std::FILE* file_ptr;
errno_t ret = fopen_s(&file_ptr, object_path.c_str(), "rb");
auto file = raii_wrap(std::move(file_ptr), file_deleter);
if(ret != 0 || file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::array<char, 2>>(file, 0);
if(!magic) {
return std::move(magic).unwrap_error();
}
if(std::memcmp(magic.unwrap_value().data(), "MZ", 2) != 0) {
return internal_error("File is not a PE file {}", object_path);
}
auto e_lfanew = load_bytes<DWORD>(file, 0x3c); // dos header + 0x3c
if(!e_lfanew) {
return std::move(e_lfanew).unwrap_error();
}
DWORD nt_header_offset = pe_byteswap_if_needed(e_lfanew.unwrap_value());
auto signature = load_bytes<std::array<char, 4>>(file, nt_header_offset); // nt header + 0
if(!signature) {
return std::move(signature).unwrap_error();
}
if(std::memcmp(signature.unwrap_value().data(), "PE\0\0", 4) != 0) {
return internal_error("File is not a PE file {}", object_path);
}
auto size_of_optional_header_raw = load_bytes<WORD>(file, nt_header_offset + 4 + 0x10); // file header + 0x10
if(!size_of_optional_header_raw) {
return std::move(size_of_optional_header_raw).unwrap_error();
}
WORD size_of_optional_header = pe_byteswap_if_needed(size_of_optional_header_raw.unwrap_value());
if(size_of_optional_header == 0) {
return internal_error("Unexpected optional header size for PE file");
}
auto optional_header_magic_raw = load_bytes<WORD>(file, nt_header_offset + 0x18); // optional header + 0x0
if(!optional_header_magic_raw) {
return std::move(optional_header_magic_raw).unwrap_error();
}
WORD optional_header_magic = pe_byteswap_if_needed(optional_header_magic_raw.unwrap_value());
VERIFY(
optional_header_magic == IMAGE_NT_OPTIONAL_HDR_MAGIC,
"PE file does not match expected bit-mode " + object_path
);
// finally get image base
if(optional_header_magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
// 32 bit
auto bytes = load_bytes<DWORD>(file, nt_header_offset + 0x18 + 0x1c); // optional header + 0x1c
if(!bytes) {
return std::move(bytes).unwrap_error();
}
return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
} else {
// 64 bit
// I get an "error: 'QWORD' was not declared in this scope" for some reason when using QWORD
auto bytes = load_bytes<unsigned __int64>(file, nt_header_offset + 0x18 + 0x18); // optional header + 0x18
if(!bytes) {
return std::move(bytes).unwrap_error();
}
return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
}
}
}
}
#endif

View File

@ -2,94 +2,15 @@
#define PE_HPP
#include "../utils/common.hpp"
#include "../utils/error.hpp"
#include "../utils/utils.hpp"
#if IS_WINDOWS
#include <array>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <cstdint>
#include <string>
#include <windows.h>
namespace cpptrace {
namespace detail {
template<typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
T pe_byteswap_if_needed(T value) {
// PE header values are little endian, I think dos e_lfanew should be too
if(!is_little_endian()) {
return byteswap(value);
} else {
return value;
}
}
inline Result<std::uintptr_t, internal_error> pe_get_module_image_base(const std::string& object_path) {
// https://drive.google.com/file/d/0B3_wGJkuWLytbnIxY1J5WUs4MEk/view?pli=1&resourcekey=0-n5zZ2UW39xVTH8ZSu6C2aQ
// https://0xrick.github.io/win-internals/pe3/
// Endianness should always be little for dos and pe headers
std::FILE* file_ptr;
errno_t ret = fopen_s(&file_ptr, object_path.c_str(), "rb");
auto file = raii_wrap(std::move(file_ptr), file_deleter);
if(ret != 0 || file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::array<char, 2>>(file, 0);
if(!magic) {
return std::move(magic).unwrap_error();
}
if(std::memcmp(magic.unwrap_value().data(), "MZ", 2) != 0) {
return internal_error("File is not a PE file {}", object_path);
}
auto e_lfanew = load_bytes<DWORD>(file, 0x3c); // dos header + 0x3c
if(!e_lfanew) {
return std::move(e_lfanew).unwrap_error();
}
DWORD nt_header_offset = pe_byteswap_if_needed(e_lfanew.unwrap_value());
auto signature = load_bytes<std::array<char, 4>>(file, nt_header_offset); // nt header + 0
if(!signature) {
return std::move(signature).unwrap_error();
}
if(std::memcmp(signature.unwrap_value().data(), "PE\0\0", 4) != 0) {
return internal_error("File is not a PE file {}", object_path);
}
auto size_of_optional_header_raw = load_bytes<WORD>(file, nt_header_offset + 4 + 0x10); // file header + 0x10
if(!size_of_optional_header_raw) {
return std::move(size_of_optional_header_raw).unwrap_error();
}
WORD size_of_optional_header = pe_byteswap_if_needed(size_of_optional_header_raw.unwrap_value());
if(size_of_optional_header == 0) {
return internal_error("Unexpected optional header size for PE file");
}
auto optional_header_magic_raw = load_bytes<WORD>(file, nt_header_offset + 0x18); // optional header + 0x0
if(!optional_header_magic_raw) {
return std::move(optional_header_magic_raw).unwrap_error();
}
WORD optional_header_magic = pe_byteswap_if_needed(optional_header_magic_raw.unwrap_value());
VERIFY(
optional_header_magic == IMAGE_NT_OPTIONAL_HDR_MAGIC,
"PE file does not match expected bit-mode " + object_path
);
// finally get image base
if(optional_header_magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
// 32 bit
auto bytes = load_bytes<DWORD>(file, nt_header_offset + 0x18 + 0x1c); // optional header + 0x1c
if(!bytes) {
return std::move(bytes).unwrap_error();
}
return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
} else {
// 64 bit
// I get an "error: 'QWORD' was not declared in this scope" for some reason when using QWORD
auto bytes = load_bytes<unsigned __int64>(file, nt_header_offset + 0x18 + 0x18); // optional header + 0x18
if(!bytes) {
return std::move(bytes).unwrap_error();
}
return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
}
}
Result<std::uintptr_t, internal_error> pe_get_module_image_base(const std::string& object_path);
}
}

67
src/binary/safe_dl.cpp Normal file
View File

@ -0,0 +1,67 @@
#include "safe_dl.hpp"
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#include "../utils/program_name.hpp"
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#include <cstring>
#include <iostream>
#ifdef CPPTRACE_HAS_DL_FIND_OBJECT
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#include <link.h>
#endif
namespace cpptrace {
namespace detail {
void get_safe_object_frame(frame_ptr address, safe_object_frame* out) {
out->raw_address = address;
dl_find_object result;
if(_dl_find_object(reinterpret_cast<void*>(address), &result) == 0) {
out->address_relative_to_object_start = address - to_frame_ptr(result.dlfo_link_map->l_addr);
if(result.dlfo_link_map->l_name != nullptr && result.dlfo_link_map->l_name[0] != 0) {
std::size_t path_length = std::strlen(result.dlfo_link_map->l_name);
std::memcpy(
out->object_path,
result.dlfo_link_map->l_name,
std::min(path_length + 1, std::size_t(CPPTRACE_PATH_MAX + 1))
);
} else {
// empty l_name, this means it's the currently running executable
memset(out->object_path, 0, CPPTRACE_PATH_MAX + 1);
auto res = readlink("/proc/self/exe", out->object_path, CPPTRACE_PATH_MAX);
if(res == -1) {
// error handling?
}
// TODO: Special handling for /proc/pid/exe unlink edge case
}
} else {
// std::cout<<"error"<<std::endl;
out->address_relative_to_object_start = 0;
out->object_path[0] = 0;
}
// TODO: Handle this part of the documentation?
// The address can be a code address or data address. On architectures using function descriptors, no attempt is
// made to decode the function descriptor. Depending on how these descriptors are implemented, _dl_find_object
// may return the object that defines the function descriptor (and not the object that contains the code
// implementing the function), or fail to find any object at all.
}
}
}
#else
namespace cpptrace {
namespace detail {
void get_safe_object_frame(frame_ptr address, safe_object_frame* out) {
out->raw_address = address;
out->address_relative_to_object_start = 0;
out->object_path[0] = 0;
}
}
}
#endif

View File

@ -2,69 +2,11 @@
#define SAFE_DL_HPP
#include "../utils/common.hpp"
#include "../utils/utils.hpp"
#include "../utils/program_name.hpp"
#include <string>
#include <vector>
#include <mutex>
#include <unordered_map>
#include <cstring>
#include <iostream>
#ifdef CPPTRACE_HAS_DL_FIND_OBJECT
#if IS_LINUX || IS_APPLE
#include <unistd.h>
#include <dlfcn.h>
#include <link.h>
#endif
namespace cpptrace {
namespace detail {
inline void get_safe_object_frame(frame_ptr address, safe_object_frame* out) {
out->raw_address = address;
dl_find_object result;
if(_dl_find_object(reinterpret_cast<void*>(address), &result) == 0) {
out->address_relative_to_object_start = address - to_frame_ptr(result.dlfo_link_map->l_addr);
if(result.dlfo_link_map->l_name != nullptr && result.dlfo_link_map->l_name[0] != 0) {
std::size_t path_length = std::strlen(result.dlfo_link_map->l_name);
std::memcpy(
out->object_path,
result.dlfo_link_map->l_name,
std::min(path_length + 1, std::size_t(CPPTRACE_PATH_MAX + 1))
);
} else {
// empty l_name, this means it's the currently running executable
memset(out->object_path, 0, CPPTRACE_PATH_MAX + 1);
auto res = readlink("/proc/self/exe", out->object_path, CPPTRACE_PATH_MAX);
if(res == -1) {
// error handling?
}
// TODO: Special handling for /proc/pid/exe unlink edge case
}
} else {
// std::cout<<"error"<<std::endl;
out->address_relative_to_object_start = 0;
out->object_path[0] = 0;
}
// TODO: Handle this part of the documentation?
// The address can be a code address or data address. On architectures using function descriptors, no attempt is
// made to decode the function descriptor. Depending on how these descriptors are implemented, _dl_find_object
// may return the object that defines the function descriptor (and not the object that contains the code
// implementing the function), or fail to find any object at all.
}
void get_safe_object_frame(frame_ptr address, safe_object_frame* out);
}
}
#else
namespace cpptrace {
namespace detail {
inline void get_safe_object_frame(frame_ptr address, safe_object_frame* out) {
out->raw_address = address;
out->address_relative_to_object_start = 0;
out->object_path[0] = 0;
}
}
}
#endif
#endif

View File

@ -5,6 +5,7 @@
#include <memory>
#include <vector>
#include <unordered_map>
#include "../binary/object.hpp"

View File

@ -5,6 +5,7 @@
#include "../utils/dbghelp_syminit_manager.hpp"
#include <memory>
#include <mutex>
#include <regex>
#include <stdexcept>
#include <system_error>

View File

@ -6,6 +6,7 @@
#include "../utils/dwarf.hpp" // has dwarf #includes
#include "../utils/error.hpp"
#include "../binary/object.hpp"
#include "../binary/mach-o.hpp"
#include "../utils/utils.hpp"
#include "../utils/program_name.hpp" // For CPPTRACE_MAX_PATH