Add a Result type and replace some exceptions with it (#109)

This commit is contained in:
Jeremy Rifkin 2024-03-30 13:35:52 -05:00 committed by GitHub
parent 47e7ee79eb
commit acaa4f42e6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 514 additions and 192 deletions

View File

@ -25,7 +25,7 @@ namespace detail {
} }
template<std::size_t Bits> template<std::size_t Bits>
static std::uintptr_t elf_get_module_image_base_from_program_table( static Result<std::uintptr_t, internal_error> elf_get_module_image_base_from_program_table(
const std::string& object_path, const std::string& object_path,
std::FILE* file, std::FILE* file,
bool is_little_endian bool is_little_endian
@ -33,33 +33,62 @@ namespace detail {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument"); static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
using Header = typename std::conditional<Bits == 32, Elf32_Ehdr, Elf64_Ehdr>::type; using Header = typename std::conditional<Bits == 32, Elf32_Ehdr, Elf64_Ehdr>::type;
using PHeader = typename std::conditional<Bits == 32, Elf32_Phdr, Elf64_Phdr>::type; using PHeader = typename std::conditional<Bits == 32, Elf32_Phdr, Elf64_Phdr>::type;
Header file_header = load_bytes<Header>(file, 0); auto loaded_header = load_bytes<Header>(file, 0);
VERIFY(file_header.e_ehsize == sizeof(Header), "ELF file header size mismatch" + object_path); if(loaded_header.is_error()) {
return std::move(loaded_header).unwrap_error();
}
const Header& file_header = loaded_header.unwrap_value();
if(file_header.e_ehsize != sizeof(Header)) {
return internal_error("ELF file header size mismatch" + object_path);
}
// PT_PHDR will occur at most once // PT_PHDR will occur at most once
// Should be somewhat reliable https://stackoverflow.com/q/61568612/15675011 // Should be somewhat reliable https://stackoverflow.com/q/61568612/15675011
// It should occur at the beginning but may as well loop just in case // It should occur at the beginning but may as well loop just in case
for(int i = 0; i < file_header.e_phnum; i++) { for(int i = 0; i < file_header.e_phnum; i++) {
PHeader program_header = load_bytes<PHeader>(file, file_header.e_phoff + file_header.e_phentsize * i); auto loaded_ph = load_bytes<PHeader>(file, file_header.e_phoff + file_header.e_phentsize * i);
if(loaded_ph.is_error()) {
return std::move(loaded_ph).unwrap_error();
}
const PHeader& program_header = loaded_ph.unwrap_value();
if(elf_byteswap_if_needed(program_header.p_type, is_little_endian) == PT_PHDR) { if(elf_byteswap_if_needed(program_header.p_type, is_little_endian) == PT_PHDR) {
return elf_byteswap_if_needed(program_header.p_vaddr, is_little_endian) - return elf_byteswap_if_needed(program_header.p_vaddr, is_little_endian) -
elf_byteswap_if_needed(program_header.p_offset, is_little_endian); elf_byteswap_if_needed(program_header.p_offset, is_little_endian);
} }
} }
// Apparently some objects like shared objects can end up missing this file. 0 as a base seems correct. // Apparently some objects like shared objects can end up missing this header. 0 as a base seems correct.
return 0; return 0;
} }
static std::uintptr_t elf_get_module_image_base(const std::string& object_path) { static Result<std::uintptr_t, internal_error> elf_get_module_image_base(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter); auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) { if(file == nullptr) {
throw file_error("Unable to read object file " + object_path); return internal_error("Unable to read object file " + object_path);
} }
// Initial checks/metadata // Initial checks/metadata
auto magic = load_bytes<std::array<char, 4>>(file, 0); auto magic = load_bytes<std::array<char, 4>>(file, 0);
VERIFY(magic == (std::array<char, 4>{0x7F, 'E', 'L', 'F'}), "File is not ELF " + object_path); if(magic.is_error()) {
bool is_64 = load_bytes<std::uint8_t>(file, 4) == 2; return std::move(magic).unwrap_error();
bool is_little_endian = load_bytes<std::uint8_t>(file, 5) == 1; }
VERIFY(load_bytes<std::uint8_t>(file, 6) == 1, "Unexpected ELF endianness " + object_path); if(magic.unwrap_value() != (std::array<char, 4>{0x7F, 'E', 'L', 'F'})) {
return internal_error("File is not ELF " + object_path);
}
auto ei_class = load_bytes<std::uint8_t>(file, 4);
if(ei_class.is_error()) {
return std::move(ei_class).unwrap_error();
}
bool is_64 = ei_class.unwrap_value() == 2;
auto ei_data = load_bytes<std::uint8_t>(file, 5);
if(ei_data.is_error()) {
return std::move(ei_data).unwrap_error();
}
bool is_little_endian = ei_data.unwrap_value() == 1;
auto ei_version = load_bytes<std::uint8_t>(file, 6);
if(ei_version.is_error()) {
return std::move(ei_version).unwrap_error();
}
if(ei_version.unwrap_value() != 1) {
return internal_error("Unexpected ELF version " + object_path);
}
// get image base // get image base
if(is_64) { if(is_64) {
return elf_get_module_image_base_from_program_table<64>(object_path, file, is_little_endian); return elf_get_module_image_base_from_program_table<64>(object_path, file, is_little_endian);

View File

@ -45,14 +45,14 @@ namespace detail {
} }
inline bool file_is_mach_o(const std::string& object_path) noexcept { inline bool file_is_mach_o(const std::string& object_path) noexcept {
try { auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
FILE* file = std::fopen(object_path.c_str(), "rb");
if(file == nullptr) { if(file == nullptr) {
return false; return false;
} }
auto magic = load_bytes<std::uint32_t>(file, 0); auto magic = load_bytes<std::uint32_t>(file, 0);
return is_mach_o(magic); if(magic) {
} catch(...) { return is_mach_o(magic.unwrap_value());
} else {
return false; return false;
} }
} }
@ -108,7 +108,7 @@ namespace detail {
}; };
class mach_o { class mach_o {
std::FILE* file = nullptr; file_wrapper file;
std::string object_path; std::string object_path;
std::uint32_t magic; std::uint32_t magic;
cpu_type_t cputype; cpu_type_t cputype;
@ -127,11 +127,11 @@ namespace detail {
struct symtab_info_data { struct symtab_info_data {
symtab_command symtab; symtab_command symtab;
std::unique_ptr<char[]> stringtab; std::unique_ptr<char[]> stringtab;
const char* get_string(std::size_t index) const { Result<const char*, internal_error> get_string(std::size_t index) const {
if(stringtab && index < symtab.strsize) { if(stringtab && index < symtab.strsize) {
return stringtab.get() + index; return stringtab.get() + index;
} else { } else {
throw std::runtime_error("can't retrieve symbol from symtab"); return internal_error("can't retrieve symbol from symtab");
} }
} }
}; };
@ -139,45 +139,69 @@ namespace detail {
bool tried_to_load_symtab = false; bool tried_to_load_symtab = false;
optional<symtab_info_data> symtab_info; optional<symtab_info_data> symtab_info;
public: mach_o(
mach_o(const std::string& object_path) : object_path(object_path) { file_wrapper file,
file = std::fopen(object_path.c_str(), "rb"); const std::string& object_path,
if(file == nullptr) { std::uint32_t magic
throw file_error("Unable to read object file " + object_path); ) :
} file(std::move(file)),
magic = load_bytes<std::uint32_t>(file, 0); object_path(object_path),
VERIFY(is_mach_o(magic), "File is not Mach-O " + object_path); magic(magic) {}
Result<monostate, internal_error> load() {
if(magic == FAT_MAGIC || magic == FAT_CIGAM) { if(magic == FAT_MAGIC || magic == FAT_CIGAM) {
load_fat_mach(); return load_fat_mach();
} else { } else {
fat_index = 0; fat_index = 0;
if(is_magic_64(magic)) { if(is_magic_64(magic)) {
load_mach<64>(); return load_mach<64>();
} else { } else {
load_mach<32>(); return load_mach<32>();
} }
} }
} }
~mach_o() { public:
if(file) { static inline NODISCARD Result<mach_o, internal_error> open_mach_o(const std::string& object_path) {
std::fclose(file); auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) {
return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
}
if(!is_mach_o(magic.unwrap_value())) {
return internal_error("File is not mach-o {}", object_path);
}
mach_o obj(std::move(file), object_path, magic.unwrap_value());
auto result = obj.load();
if(result.is_error()) {
return result.unwrap_error();
} else {
return obj;
} }
} }
std::uintptr_t get_text_vmaddr() { mach_o(mach_o&&) = default;
~mach_o() = default;
Result<std::uintptr_t, internal_error> get_text_vmaddr() {
for(const auto& command : load_commands) { for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) { if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment = command.cmd == LC_SEGMENT_64 auto segment = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset) ? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset); : load_segment_command<32>(command.file_offset);
if(std::strcmp(segment.segname, "__TEXT") == 0) { if(segment.is_error()) {
return segment.vmaddr; segment.drop_error();
}
if(std::strcmp(segment.unwrap_value().segname, "__TEXT") == 0) {
return segment.unwrap_value().vmaddr;
} }
} }
} }
// somehow no __TEXT section was found... // somehow no __TEXT section was found...
throw std::runtime_error("Couldn't find __TEXT section while parsing Mach-O object"); return internal_error("Couldn't find __TEXT section while parsing Mach-O object");
} }
std::size_t get_fat_index() const { std::size_t get_fat_index() const {
@ -189,10 +213,16 @@ namespace detail {
int i = 0; int i = 0;
for(const auto& command : load_commands) { for(const auto& command : load_commands) {
if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) { if(command.cmd == LC_SEGMENT_64 || command.cmd == LC_SEGMENT) {
auto segment = command.cmd == LC_SEGMENT_64 auto segment_load = command.cmd == LC_SEGMENT_64
? load_segment_command<64>(command.file_offset) ? load_segment_command<64>(command.file_offset)
: load_segment_command<32>(command.file_offset); : load_segment_command<32>(command.file_offset);
fprintf(stderr, "Load command %d\n", i); fprintf(stderr, "Load command %d\n", i);
if(segment_load.is_error()) {
fprintf(stderr, " error\n");
segment_load.drop_error();
continue;
}
auto& segment = segment_load.unwrap_value();
fprintf(stderr, " cmd %u\n", segment.cmd); fprintf(stderr, " cmd %u\n", segment.cmd);
fprintf(stderr, " cmdsize %u\n", segment.cmdsize); fprintf(stderr, " cmdsize %u\n", segment.cmdsize);
fprintf(stderr, " segname %s\n", segment.segname); fprintf(stderr, " segname %s\n", segment.segname);
@ -213,8 +243,16 @@ namespace detail {
for(const auto& command : load_commands) { for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) { if(command.cmd == LC_SYMTAB) {
symtab_info_data info; symtab_info_data info;
info.symtab = load_symbol_table_command(command.file_offset); auto symtab = load_symbol_table_command(command.file_offset);
info.stringtab = load_string_table(info.symtab.stroff, info.symtab.strsize); if(!symtab) {
// TODO
}
info.symtab = symtab.unwrap_value();
auto string = load_string_table(info.symtab.stroff, info.symtab.strsize);
if(!string) {
// TODO
}
info.stringtab = std::move(string).unwrap_value();
symtab_info = std::move(info); symtab_info = std::move(info);
break; break;
} }
@ -263,8 +301,14 @@ namespace detail {
int i = 0; int i = 0;
for(const auto& command : load_commands) { for(const auto& command : load_commands) {
if(command.cmd == LC_SYMTAB) { if(command.cmd == LC_SYMTAB) {
auto symtab = load_symbol_table_command(command.file_offset); auto symtab_load = load_symbol_table_command(command.file_offset);
fprintf(stderr, "Load command %d\n", i); fprintf(stderr, "Load command %d\n", i);
if(symtab_load.is_error()) {
fprintf(stderr, " error\n");
symtab_load.drop_error();
continue;
}
auto& symtab = symtab_load.unwrap_value();
fprintf(stderr, " cmd %llu\n", to_ull(symtab.cmd)); fprintf(stderr, " cmd %llu\n", to_ull(symtab.cmd));
fprintf(stderr, " cmdsize %llu\n", to_ull(symtab.cmdsize)); fprintf(stderr, " cmdsize %llu\n", to_ull(symtab.cmdsize));
fprintf(stderr, " symoff 0x%llu\n", to_ull(symtab.symoff)); fprintf(stderr, " symoff 0x%llu\n", to_ull(symtab.symoff));
@ -272,11 +316,24 @@ namespace detail {
fprintf(stderr, " stroff 0x%llu\n", to_ull(symtab.stroff)); fprintf(stderr, " stroff 0x%llu\n", to_ull(symtab.stroff));
fprintf(stderr, " strsize %llu\n", to_ull(symtab.strsize)); fprintf(stderr, " strsize %llu\n", to_ull(symtab.strsize));
auto stringtab = load_string_table(symtab.stroff, symtab.strsize); auto stringtab = load_string_table(symtab.stroff, symtab.strsize);
if(!stringtab) {
stringtab.drop_error();
}
for(std::size_t j = 0; j < symtab.nsyms; j++) { for(std::size_t j = 0; j < symtab.nsyms; j++) {
nlist_64 entry = bits == 32 auto entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j) ? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j); : load_symtab_entry<64>(symtab.symoff, j);
print_symbol_table_entry(entry, stringtab, symtab.strsize, j); if(!entry) {
fprintf(stderr, "error loading symtab entry\n");
entry.drop_error();
continue;
}
print_symbol_table_entry(
entry.unwrap_value(),
std::move(stringtab).value_or(std::unique_ptr<char[]>(nullptr)),
symtab.strsize,
j
);
} }
} }
i++; i++;
@ -308,9 +365,13 @@ namespace detail {
std::string current_module; std::string current_module;
optional<debug_map_entry> current_function; optional<debug_map_entry> current_function;
for(std::size_t j = 0; j < symtab.nsyms; j++) { for(std::size_t j = 0; j < symtab.nsyms; j++) {
nlist_64 entry = bits == 32 auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j) ? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j); : load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
// TODO
}
auto& entry = load_entry.unwrap_value();
// entry.n_type & N_STAB indicates symbolic debug info // entry.n_type & N_STAB indicates symbolic debug info
if(!(entry.n_type & N_STAB)) { if(!(entry.n_type & N_STAB)) {
continue; continue;
@ -320,15 +381,24 @@ namespace detail {
// pass - these encode path and filename for the module, if applicable // pass - these encode path and filename for the module, if applicable
break; break;
case N_OSO: case N_OSO:
{
// sets the module // sets the module
current_module = symtab_info.get_string(entry.n_un.n_strx); auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
// TODO
}
current_module = str.unwrap_value();
}
break; break;
case N_BNSYM: break; // pass case N_BNSYM: break; // pass
case N_ENSYM: break; // pass case N_ENSYM: break; // pass
case N_FUN: case N_FUN:
{ {
const char* str = symtab_info.get_string(entry.n_un.n_strx); auto str = symtab_info.get_string(entry.n_un.n_strx);
if(str[0] == 0) { if(!str) {
// TODO
}
if(str.unwrap_value()[0] == 0) {
// end of function scope // end of function scope
if(!current_function) { /**/ } if(!current_function) { /**/ }
current_function.unwrap().size = entry.n_value; current_function.unwrap().size = entry.n_value;
@ -336,7 +406,7 @@ namespace detail {
} else { } else {
current_function = debug_map_entry{}; current_function = debug_map_entry{};
current_function.unwrap().source_address = entry.n_value; current_function.unwrap().source_address = entry.n_value;
current_function.unwrap().name = str; current_function.unwrap().name = str.unwrap_value();
} }
} }
break; break;
@ -353,16 +423,24 @@ namespace detail {
const auto& symtab = symtab_info.symtab; const auto& symtab = symtab_info.symtab;
// TODO: Take timestamp into account? // TODO: Take timestamp into account?
for(std::size_t j = 0; j < symtab.nsyms; j++) { for(std::size_t j = 0; j < symtab.nsyms; j++) {
nlist_64 entry = bits == 32 auto load_entry = bits == 32
? load_symtab_entry<32>(symtab.symoff, j) ? load_symtab_entry<32>(symtab.symoff, j)
: load_symtab_entry<64>(symtab.symoff, j); : load_symtab_entry<64>(symtab.symoff, j);
if(!load_entry) {
// TODO
}
auto& entry = load_entry.unwrap_value();
if(entry.n_type & N_STAB) { if(entry.n_type & N_STAB) {
continue; continue;
} }
if((entry.n_type & N_TYPE) == N_SECT) { if((entry.n_type & N_TYPE) == N_SECT) {
auto str = symtab_info.get_string(entry.n_un.n_strx);
if(!str) {
// TODO
}
symbols.push_back({ symbols.push_back({
entry.n_value, entry.n_value,
symtab_info.get_string(entry.n_un.n_strx) str.unwrap_value()
}); });
} }
} }
@ -390,12 +468,16 @@ namespace detail {
private: private:
template<std::size_t Bits> template<std::size_t Bits>
void load_mach() { Result<monostate, internal_error> load_mach() {
static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument"); static_assert(Bits == 32 || Bits == 64, "Unexpected Bits argument");
bits = Bits; bits = Bits;
using Mach_Header = typename std::conditional<Bits == 32, mach_header, mach_header_64>::type; using Mach_Header = typename std::conditional<Bits == 32, mach_header, mach_header_64>::type;
std::size_t header_size = sizeof(Mach_Header); std::size_t header_size = sizeof(Mach_Header);
Mach_Header header = load_bytes<Mach_Header>(file, load_base); auto load_header = load_bytes<Mach_Header>(file, load_base);
if(!load_header) {
return load_header.unwrap_error();
}
Mach_Header& header = load_header.unwrap_value();
magic = header.magic; magic = header.magic;
if(should_swap()) { if(should_swap()) {
swap_mach_header(header); swap_mach_header(header);
@ -412,19 +494,28 @@ namespace detail {
// iterate load commands // iterate load commands
std::uint32_t actual_offset = load_commands_offset; std::uint32_t actual_offset = load_commands_offset;
for(std::uint32_t i = 0; i < ncmds; i++) { for(std::uint32_t i = 0; i < ncmds; i++) {
load_command cmd = load_bytes<load_command>(file, actual_offset); auto load_cmd = load_bytes<load_command>(file, actual_offset);
if(!load_cmd) {
return load_cmd.unwrap_error();
}
load_command& cmd = load_cmd.unwrap_value();
if(should_swap()) { if(should_swap()) {
swap_load_command(&cmd, NX_UnknownByteOrder); swap_load_command(&cmd, NX_UnknownByteOrder);
} }
load_commands.push_back({ actual_offset, cmd.cmd, cmd.cmdsize }); load_commands.push_back({ actual_offset, cmd.cmd, cmd.cmdsize });
actual_offset += cmd.cmdsize; actual_offset += cmd.cmdsize;
} }
return monostate{};
} }
void load_fat_mach() { Result<monostate, internal_error> load_fat_mach() {
std::size_t header_size = sizeof(fat_header); std::size_t header_size = sizeof(fat_header);
std::size_t arch_size = sizeof(fat_arch); std::size_t arch_size = sizeof(fat_arch);
fat_header header = load_bytes<fat_header>(file, 0); auto load_header = load_bytes<fat_header>(file, 0);
if(!load_header) {
return load_header.unwrap_error();
}
fat_header& header = load_header.unwrap_value();
if(should_swap()) { if(should_swap()) {
swap_fat_header(&header, NX_UnknownByteOrder); swap_fat_header(&header, NX_UnknownByteOrder);
} }
@ -458,7 +549,11 @@ namespace detail {
fat_arches.reserve(header.nfat_arch); fat_arches.reserve(header.nfat_arch);
off_t arch_offset = (off_t)header_size; off_t arch_offset = (off_t)header_size;
for(std::size_t i = 0; i < header.nfat_arch; i++) { for(std::size_t i = 0; i < header.nfat_arch; i++) {
fat_arch arch = load_bytes<fat_arch>(file, arch_offset); auto load_arch = load_bytes<fat_arch>(file, arch_offset);
if(!load_arch) {
return load_arch.unwrap_error();
}
fat_arch& arch = load_arch.unwrap_value();
if(should_swap()) { if(should_swap()) {
swap_fat_arch(&arch, 1, NX_UnknownByteOrder); swap_fat_arch(&arch, 1, NX_UnknownByteOrder);
} }
@ -474,24 +569,31 @@ namespace detail {
); );
if(best) { if(best) {
off_t mach_header_offset = (off_t)best->offset; off_t mach_header_offset = (off_t)best->offset;
std::uint32_t magic = load_bytes<std::uint32_t>(file, mach_header_offset); auto magic = load_bytes<std::uint32_t>(file, mach_header_offset);
if(!magic) {
return magic.unwrap_error();
}
load_base = mach_header_offset; load_base = mach_header_offset;
fat_index = best - fat_arches.data(); fat_index = best - fat_arches.data();
if(is_magic_64(magic)) { if(is_magic_64(magic.unwrap_value())) {
load_mach<64>(); load_mach<64>();
} else { } else {
load_mach<32>(); load_mach<32>();
} }
return; return monostate{};
} }
// If this is reached... something went wrong. The cpu we're on wasn't found. // If this is reached... something went wrong. The cpu we're on wasn't found.
throw std::runtime_error("Couldn't find appropriate architecture in fat Mach-O"); return internal_error("Couldn't find appropriate architecture in fat Mach-O");
} }
template<std::size_t Bits> template<std::size_t Bits>
segment_command_64 load_segment_command(std::uint32_t offset) const { Result<segment_command_64, internal_error> load_segment_command(std::uint32_t offset) const {
using Segment_Command = typename std::conditional<Bits == 32, segment_command, segment_command_64>::type; using Segment_Command = typename std::conditional<Bits == 32, segment_command, segment_command_64>::type;
Segment_Command segment = load_bytes<Segment_Command>(file, offset); auto load_segment = load_bytes<Segment_Command>(file, offset);
if(!load_segment) {
return load_segment.unwrap_error();
}
Segment_Command& segment = load_segment.unwrap_value();
ASSERT(segment.cmd == LC_SEGMENT_64 || segment.cmd == LC_SEGMENT); ASSERT(segment.cmd == LC_SEGMENT_64 || segment.cmd == LC_SEGMENT);
if(should_swap()) { if(should_swap()) {
swap_segment_command(segment); swap_segment_command(segment);
@ -513,8 +615,12 @@ namespace detail {
return common; return common;
} }
symtab_command load_symbol_table_command(std::uint32_t offset) const { Result<symtab_command, internal_error> load_symbol_table_command(std::uint32_t offset) const {
symtab_command symtab = load_bytes<symtab_command>(file, offset); auto load_symtab = load_bytes<symtab_command>(file, offset);
if(!load_symtab) {
return load_symtab.unwrap_error();
}
symtab_command& symtab = load_symtab.unwrap_value();
ASSERT(symtab.cmd == LC_SYMTAB); ASSERT(symtab.cmd == LC_SYMTAB);
if(should_swap()) { if(should_swap()) {
swap_symtab_command(&symtab, NX_UnknownByteOrder); swap_symtab_command(&symtab, NX_UnknownByteOrder);
@ -523,10 +629,14 @@ namespace detail {
} }
template<std::size_t Bits> template<std::size_t Bits>
nlist_64 load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const { Result<nlist_64, internal_error> load_symtab_entry(std::uint32_t symbol_base, std::size_t index) const {
using Nlist = typename std::conditional<Bits == 32, struct nlist, struct nlist_64>::type; using Nlist = typename std::conditional<Bits == 32, struct nlist, struct nlist_64>::type;
uint32_t offset = load_base + symbol_base + index * sizeof(Nlist); uint32_t offset = load_base + symbol_base + index * sizeof(Nlist);
Nlist entry = load_bytes<Nlist>(file, offset); auto load_entry = load_bytes<Nlist>(file, offset);
if(!load_entry) {
return load_entry.unwrap_error();
}
Nlist& entry = load_entry.unwrap_value();
if(should_swap()) { if(should_swap()) {
swap_nlist(entry); swap_nlist(entry);
} }
@ -540,10 +650,14 @@ namespace detail {
return common; return common;
} }
std::unique_ptr<char[]> load_string_table(std::uint32_t offset, std::uint32_t byte_count) const { Result<std::unique_ptr<char[]>, internal_error> load_string_table(std::uint32_t offset, std::uint32_t byte_count) const {
std::unique_ptr<char[]> buffer(new char[byte_count + 1]); std::unique_ptr<char[]> buffer(new char[byte_count + 1]);
VERIFY(std::fseek(file, load_base + offset, SEEK_SET) == 0, "fseek error"); if(std::fseek(file, load_base + offset, SEEK_SET) != 0) {
VERIFY(std::fread(buffer.get(), sizeof(char), byte_count, file) == byte_count, "fread error"); return internal_error("fseek error while loading mach-o symbol table");
}
if(std::fread(buffer.get(), sizeof(char), byte_count, file) != byte_count) {
return internal_error("fread error while loading mach-o symbol table");
}
buffer[byte_count] = 0; // just out of an abundance of caution buffer[byte_count] = 0; // just out of an abundance of caution
return buffer; return buffer;
} }
@ -553,13 +667,17 @@ namespace detail {
} }
}; };
inline bool macho_is_fat(const std::string& object_path) { inline Result<bool, internal_error> macho_is_fat(const std::string& object_path) {
auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter); auto file = raii_wrap(std::fopen(object_path.c_str(), "rb"), file_deleter);
if(file == nullptr) { if(file == nullptr) {
throw file_error("Unable to read object file " + object_path); return internal_error("Unable to read object file {}", object_path);
}
auto magic = load_bytes<std::uint32_t>(file, 0);
if(!magic) {
return magic.unwrap_error();
} else {
return is_fat_magic(magic.unwrap_value());
} }
std::uint32_t magic = load_bytes<std::uint32_t>(file, 0);
return is_fat_magic(magic);
} }
} }
} }

View File

@ -25,7 +25,7 @@
namespace cpptrace { namespace cpptrace {
namespace detail { namespace detail {
#if IS_LINUX #if IS_LINUX
inline std::uintptr_t get_module_image_base(const std::string& object_path) { inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex; static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex); std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache; static std::unordered_map<std::string, std::uintptr_t> cache;
@ -34,14 +34,18 @@ namespace detail {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not // arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation // have two threads try to do the same computation
auto base = elf_get_module_image_base(object_path); auto base = elf_get_module_image_base(object_path);
cache.insert(it, {object_path, base}); // TODO: Cache the error
if(base.is_error()) {
return base.unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base; return base;
} else { } else {
return it->second; return it->second;
} }
} }
#elif IS_APPLE #elif IS_APPLE
inline std::uintptr_t get_module_image_base(const std::string& object_path) { inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
// We have to parse the Mach-O to find the offset of the text section..... // We have to parse the Mach-O to find the offset of the text section.....
// I don't know how addresses are handled if there is more than one __TEXT load command. I'm assuming for // I don't know how addresses are handled if there is more than one __TEXT load command. I'm assuming for
// now that there is only one, and I'm using only the first section entry within that load command. // now that there is only one, and I'm using only the first section entry within that load command.
@ -52,15 +56,23 @@ namespace detail {
if(it == cache.end()) { if(it == cache.end()) {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not // arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation // have two threads try to do the same computation
auto base = mach_o(object_path).get_text_vmaddr(); auto obj = mach_o::open_mach_o(object_path);
cache.insert(it, {object_path, base}); // TODO: Cache the error
if(!obj) {
return obj.unwrap_error();
}
auto base = obj.unwrap_value().get_text_vmaddr();
if(!base) {
return base.unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base; return base;
} else { } else {
return it->second; return it->second;
} }
} }
#else // Windows #else // Windows
inline std::uintptr_t get_module_image_base(const std::string& object_path) { inline Result<std::uintptr_t, internal_error> get_module_image_base(const std::string& object_path) {
static std::mutex mutex; static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex); std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::uintptr_t> cache; static std::unordered_map<std::string, std::uintptr_t> cache;
@ -69,7 +81,11 @@ namespace detail {
// arguably it'd be better to release the lock while computing this, but also arguably it's good to not // arguably it'd be better to release the lock while computing this, but also arguably it's good to not
// have two threads try to do the same computation // have two threads try to do the same computation
auto base = pe_get_module_image_base(object_path); auto base = pe_get_module_image_base(object_path);
cache.insert(it, {object_path, base}); // TODO: Cache the error
if(!base) {
return base.unwrap_error();
}
cache.insert(it, {object_path, base.unwrap_value()});
return base; return base;
} else { } else {
return it->second; return it->second;

View File

@ -58,9 +58,14 @@ namespace detail {
frame.object_address = 0; frame.object_address = 0;
if(dladdr(reinterpret_cast<void*>(address), &info)) { // thread safe if(dladdr(reinterpret_cast<void*>(address), &info)) { // thread safe
frame.object_path = info.dli_fname; frame.object_path = info.dli_fname;
auto base = get_module_image_base(info.dli_fname);
if(base.has_value()) {
frame.object_address = address frame.object_address = address
- reinterpret_cast<std::uintptr_t>(info.dli_fbase) - reinterpret_cast<std::uintptr_t>(info.dli_fbase)
+ get_module_image_base(info.dli_fname); + base.unwrap_value();
} else {
base.drop_error();
}
} }
return frame; return frame;
} }
@ -99,9 +104,14 @@ namespace detail {
&handle &handle
)) { )) {
frame.object_path = get_module_name(handle); frame.object_path = get_module_name(handle);
auto base = get_module_image_base(frame.object_path);
if(base.has_value()) {
frame.object_address = address frame.object_address = address
- reinterpret_cast<std::uintptr_t>(handle) - reinterpret_cast<std::uintptr_t>(handle)
+ get_module_image_base(frame.object_path); + base.unwrap_value();
} else {
base.drop_error();
}
} else { } else {
std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what()); std::fprintf(stderr, "%s\n", std::system_error(GetLastError(), std::system_category()).what());
} }
@ -119,9 +129,13 @@ namespace detail {
} }
inline object_frame resolve_safe_object_frame(const safe_object_frame& frame) { inline object_frame resolve_safe_object_frame(const safe_object_frame& frame) {
auto base = get_module_image_base(frame.object_path);
if(base.is_error()) {
throw base.unwrap_error(); // This throw is intentional
}
return { return {
frame.raw_address, frame.raw_address,
frame.address_relative_to_object_start + get_module_image_base(frame.object_path), frame.address_relative_to_object_start + base.unwrap_value(),
frame.object_path frame.object_path
}; };
} }

View File

@ -26,7 +26,7 @@ namespace detail {
} }
} }
inline std::uintptr_t pe_get_module_image_base(const std::string& object_path) { inline Result<std::uintptr_t, internal_error> pe_get_module_image_base(const std::string& object_path) {
// https://drive.google.com/file/d/0B3_wGJkuWLytbnIxY1J5WUs4MEk/view?pli=1&resourcekey=0-n5zZ2UW39xVTH8ZSu6C2aQ // https://drive.google.com/file/d/0B3_wGJkuWLytbnIxY1J5WUs4MEk/view?pli=1&resourcekey=0-n5zZ2UW39xVTH8ZSu6C2aQ
// https://0xrick.github.io/win-internals/pe3/ // https://0xrick.github.io/win-internals/pe3/
// Endianness should always be little for dos and pe headers // Endianness should always be little for dos and pe headers
@ -34,21 +34,40 @@ namespace detail {
errno_t ret = fopen_s(&file_ptr, object_path.c_str(), "rb"); errno_t ret = fopen_s(&file_ptr, object_path.c_str(), "rb");
auto file = raii_wrap(std::move(file_ptr), file_deleter); auto file = raii_wrap(std::move(file_ptr), file_deleter);
if(ret != 0 || file == nullptr) { if(ret != 0 || file == nullptr) {
throw file_error("Unable to read object file " + object_path); throw internal_error("Unable to read object file {}", object_path);
} }
auto magic = load_bytes<std::array<char, 2>>(file, 0); auto magic = load_bytes<std::array<char, 2>>(file, 0);
VERIFY(std::memcmp(magic.data(), "MZ", 2) == 0, "File is not a PE file " + object_path); if(!magic) {
DWORD e_lfanew = pe_byteswap_if_needed(load_bytes<DWORD>(file, 0x3c)); // dos header + 0x3c return magic.unwrap_error();
DWORD nt_header_offset = e_lfanew; }
if(std::memcmp(magic.unwrap_value().data(), "MZ", 2) != 0) {
return internal_error("File is not a PE file {}", object_path);
}
auto e_lfanew = load_bytes<DWORD>(file, 0x3c); // dos header + 0x3c
if(!e_lfanew) {
return e_lfanew.unwrap_error();
}
DWORD nt_header_offset = pe_byteswap_if_needed(e_lfanew.unwrap_value());
auto signature = load_bytes<std::array<char, 4>>(file, nt_header_offset); // nt header + 0 auto signature = load_bytes<std::array<char, 4>>(file, nt_header_offset); // nt header + 0
VERIFY(std::memcmp(signature.data(), "PE\0\0", 4) == 0, "File is not a PE file " + object_path); if(!signature) {
WORD size_of_optional_header = pe_byteswap_if_needed( return signature.unwrap_error();
load_bytes<WORD>(file, nt_header_offset + 4 + 0x10) // file header + 0x10 }
); if(std::memcmp(signature.unwrap_value().data(), "PE\0\0", 4) != 0) {
VERIFY(size_of_optional_header != 0); return internal_error("File is not a PE file {}", object_path);
WORD optional_header_magic = pe_byteswap_if_needed( }
load_bytes<WORD>(file, nt_header_offset + 0x18) // optional header + 0x0 auto size_of_optional_header_raw = load_bytes<WORD>(file, nt_header_offset + 4 + 0x10); // file header + 0x10
); if(!size_of_optional_header_raw) {
return size_of_optional_header_raw.unwrap_error();
}
WORD size_of_optional_header = pe_byteswap_if_needed(size_of_optional_header_raw.unwrap_value());
if(size_of_optional_header == 0) {
return internal_error("Unexpected optional header size for PE file");
}
auto optional_header_magic_raw = load_bytes<WORD>(file, nt_header_offset + 0x18); // optional header + 0x0
if(!optional_header_magic_raw) {
return optional_header_magic_raw.unwrap_error();
}
WORD optional_header_magic = pe_byteswap_if_needed(optional_header_magic_raw.unwrap_value());
VERIFY( VERIFY(
optional_header_magic == IMAGE_NT_OPTIONAL_HDR_MAGIC, optional_header_magic == IMAGE_NT_OPTIONAL_HDR_MAGIC,
"PE file does not match expected bit-mode " + object_path "PE file does not match expected bit-mode " + object_path
@ -56,19 +75,19 @@ namespace detail {
// finally get image base // finally get image base
if(optional_header_magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) { if(optional_header_magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
// 32 bit // 32 bit
return to<std::uintptr_t>( auto bytes = load_bytes<DWORD>(file, nt_header_offset + 0x18 + 0x1c); // optional header + 0x1c
pe_byteswap_if_needed( if(!bytes) {
load_bytes<DWORD>(file, nt_header_offset + 0x18 + 0x1c) // optional header + 0x1c return bytes.unwrap_error();
) }
); return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
} else { } else {
// 64 bit // 64 bit
// I get an "error: 'QWORD' was not declared in this scope" for some reason when using QWORD // I get an "error: 'QWORD' was not declared in this scope" for some reason when using QWORD
return to<std::uintptr_t>( auto bytes = load_bytes<unsigned __int64>(file, nt_header_offset + 0x18 + 0x18); // optional header + 0x18
pe_byteswap_if_needed( if(!bytes) {
load_bytes<unsigned __int64>(file, nt_header_offset + 0x18 + 0x18) // optional header + 0x18 return bytes.unwrap_error();
) }
); return to<std::uintptr_t>(pe_byteswap_if_needed(bytes.unwrap_value()));
} }
} }
} }

View File

@ -70,9 +70,8 @@ namespace dbghelp {
if(FAILABLE) { if(FAILABLE) {
return (T)-1; return (T)-1;
} else { } else {
throw std::logic_error( throw internal_error(
std::string("SymGetTypeInfo failed: ") "SymGetTypeInfo failed: {}", std::system_error(GetLastError(), std::system_category()).what()
+ std::system_error(GetLastError(), std::system_category()).what()
); );
} }
} }
@ -85,9 +84,8 @@ namespace dbghelp {
if( if(
!SymGetTypeInfo(proc, modbase, type_index, static_cast<::IMAGEHLP_SYMBOL_TYPE_INFO>(SymType), &info) !SymGetTypeInfo(proc, modbase, type_index, static_cast<::IMAGEHLP_SYMBOL_TYPE_INFO>(SymType), &info)
) { ) {
throw std::logic_error( throw internal_error(
std::string("SymGetTypeInfo failed: ") "SymGetTypeInfo failed: {}", std::system_error(GetLastError(), std::system_category()).what()
+ std::system_error(GetLastError(), std::system_category()).what()
); );
} }
// special case to properly free a buffer and convert string to narrow chars, only used for // special case to properly free a buffer and convert string to narrow chars, only used for
@ -247,15 +245,15 @@ namespace dbghelp {
children children
) )
) { ) {
throw std::logic_error( throw internal_error(
std::string("SymGetTypeInfo failed: ") "SymGetTypeInfo failed: {}",
+ std::system_error(GetLastError(), std::system_category()).what() std::system_error(GetLastError(), std::system_category()).what()
); );
} }
// get children type // get children type
std::string extent = "("; std::string extent = "(";
if(children->Start != 0) { if(children->Start != 0) {
throw std::logic_error("Error: children->Start == 0"); throw internal_error("Error: children->Start == 0");
} }
for(std::size_t i = 0; i < n_children; i++) { for(std::size_t i = 0; i < n_children; i++) {
extent += (i == 0 ? "" : ", ") + resolve_type(children->ChildId[i], proc, modbase); extent += (i == 0 ? "" : ", ") + resolve_type(children->ChildId[i], proc, modbase);
@ -428,7 +426,7 @@ namespace dbghelp {
get_syminit_manager().init(proc); get_syminit_manager().init(proc);
} else { } else {
if(!SymInitialize(proc, NULL, TRUE)) { if(!SymInitialize(proc, NULL, TRUE)) {
throw std::logic_error("Cpptrace SymInitialize failed"); throw internal_error("Cpptrace SymInitialize failed");
} }
} }
for(const auto frame : frames) { for(const auto frame : frames) {
@ -445,7 +443,7 @@ namespace dbghelp {
} }
if(get_cache_mode() != cache_mode::prioritize_speed) { if(get_cache_mode() != cache_mode::prioritize_speed) {
if(!SymCleanup(proc)) { if(!SymCleanup(proc)) {
throw std::logic_error("Cpptrace SymCleanup failed"); throw internal_error("Cpptrace SymCleanup failed");
} }
} }
return trace; return trace;

View File

@ -15,9 +15,12 @@ namespace libdl {
stacktrace_frame resolve_frame(const frame_ptr addr) { stacktrace_frame resolve_frame(const frame_ptr addr) {
Dl_info info; Dl_info info;
if(dladdr(reinterpret_cast<void*>(addr), &info)) { // thread-safe if(dladdr(reinterpret_cast<void*>(addr), &info)) { // thread-safe
auto base = get_module_image_base(info.dli_fname);
return { return {
addr, addr,
addr - reinterpret_cast<std::uintptr_t>(info.dli_fbase) + get_module_image_base(info.dli_fname), base.has_value()
? addr - reinterpret_cast<std::uintptr_t>(info.dli_fbase) + base.unwrap_value()
: 0,
nullable<std::uint32_t>::null(), nullable<std::uint32_t>::null(),
nullable<std::uint32_t>::null(), nullable<std::uint32_t>::null(),
info.dli_fname ? info.dli_fname : "", info.dli_fname ? info.dli_fname : "",

View File

@ -38,7 +38,7 @@ namespace libbacktrace {
} }
void error_callback(void*, const char* msg, int errnum) { void error_callback(void*, const char* msg, int errnum) {
throw std::runtime_error(microfmt::format("Libbacktrace error: {}, code {}\n", msg, errnum)); throw internal_error("Libbacktrace error: {}, code {}", msg, errnum);
} }
backtrace_state* get_backtrace_state() { backtrace_state* get_backtrace_state() {

View File

@ -149,8 +149,15 @@ namespace libdwarf {
} }
use_buffer = false; // we resolved dSYM above as appropriate use_buffer = false; // we resolved dSYM above as appropriate
} }
if(macho_is_fat(object_path)) { auto result = macho_is_fat(object_path);
universal_number = mach_o(object_path).get_fat_index(); if(result.is_error()) {
result.drop_error();
} else if(result.unwrap_value()) {
auto obj = mach_o::open_mach_o(object_path);
if(!obj) {
// TODO
}
universal_number = obj.unwrap_value().get_fat_index();
} }
#endif #endif
@ -901,7 +908,9 @@ namespace libdwarf {
retrieve_symbol(vec_it->die, pc, vec_it->dwversion, frame, inlines); retrieve_symbol(vec_it->die, pc, vec_it->dwversion, frame, inlines);
} }
} else { } else {
ASSERT(cu_cache.size() == 0, "Vec should be empty?"); // I've had this happen for _start, where there is a cached CU for the object but _start is outside
// of the CU's PC range
// ASSERT(cu_cache.size() == 0, "Vec should be empty?");
} }
} }
} }
@ -992,7 +1001,11 @@ namespace libdwarf {
// the path doesn't exist // the path doesn't exist
std::unordered_map<std::string, uint64_t> symbols; std::unordered_map<std::string, uint64_t> symbols;
this->symbols = symbols; this->symbols = symbols;
auto symbol_table = mach_o(object_path).symbol_table(); auto obj = mach_o::open_mach_o(object_path);
if(!obj) {
// TODO
}
auto symbol_table = obj.unwrap_value().symbol_table();
for(const auto& symbol : symbol_table) { for(const auto& symbol : symbol_table) {
symbols[symbol.name] = symbol.address; symbols[symbol.name] = symbol.address;
} }
@ -1045,7 +1058,11 @@ namespace libdwarf {
debug_map_resolver(const std::string& source_object_path) { debug_map_resolver(const std::string& source_object_path) {
// load mach-o // load mach-o
// TODO: Cache somehow? // TODO: Cache somehow?
mach_o source_mach(source_object_path); auto obj = mach_o::open_mach_o(source_object_path);
if(!obj) {
// TODO
}
mach_o& source_mach = obj.unwrap_value();
auto source_debug_map = source_mach.get_debug_map(); auto source_debug_map = source_mach.get_debug_map();
// get symbol entries from debug map, as well as the various object files used to make this binary // get symbol entries from debug map, as well as the various object files used to make this binary
for(auto& entry : source_debug_map) { for(auto& entry : source_debug_map) {

View File

@ -110,7 +110,7 @@ namespace detail {
get_syminit_manager().init(proc); get_syminit_manager().init(proc);
} else { } else {
if(!SymInitialize(proc, NULL, TRUE)) { if(!SymInitialize(proc, NULL, TRUE)) {
throw std::logic_error("Cpptrace SymInitialize failed"); throw internal_error("Cpptrace SymInitialize failed");
} }
} }
while(trace.size() < max_depth) { while(trace.size() < max_depth) {
@ -147,7 +147,7 @@ namespace detail {
} }
if(get_cache_mode() != cache_mode::prioritize_speed) { if(get_cache_mode() != cache_mode::prioritize_speed) {
if(!SymCleanup(proc)) { if(!SymCleanup(proc)) {
throw std::logic_error("Cpptrace SymCleanup failed"); throw internal_error("Cpptrace SymCleanup failed");
} }
} }
return trace; return trace;

View File

@ -50,6 +50,14 @@
#define MAGENTA ESC "35m" #define MAGENTA ESC "35m"
#define CYAN ESC "36m" #define CYAN ESC "36m"
#if IS_GCC || IS_CLANG
#define NODISCARD __attribute__((warn_unused_result))
// #elif IS_MSVC && _MSC_VER >= 1700
// #define NODISCARD _Check_return_
#else
#define NODISCARD
#endif
namespace cpptrace { namespace cpptrace {
namespace detail { namespace detail {
static const stacktrace_frame null_frame { static const stacktrace_frame null_frame {

View File

@ -25,7 +25,7 @@ namespace detail {
void init(HANDLE proc) { void init(HANDLE proc) {
if(set.count(proc) == 0) { if(set.count(proc) == 0) {
if(!SymInitialize(proc, NULL, TRUE)) { if(!SymInitialize(proc, NULL, TRUE)) {
throw std::logic_error(microfmt::format("SymInitialize failed {}", GetLastError())); throw internal_error("SymInitialize failed {}", GetLastError());
} }
set.insert(proc); set.insert(proc);
} }

View File

@ -28,7 +28,7 @@ namespace libdwarf {
char* msg = dwarf_errmsg(error); char* msg = dwarf_errmsg(error);
(void)dbg; (void)dbg;
// dwarf_dealloc_error(dbg, error); // dwarf_dealloc_error(dbg, error);
throw std::runtime_error(microfmt::format("Cpptrace dwarf error {} {}\n", ev, msg)); throw internal_error("Cpptrace dwarf error {} {}", ev, msg);
} }
struct die_object { struct die_object {

View File

@ -17,10 +17,12 @@
namespace cpptrace { namespace cpptrace {
namespace detail { namespace detail {
class file_error : public std::exception { class internal_error : public std::exception {
std::string msg; std::string msg;
public: public:
file_error(std::string path) : msg("Unable to read file " + std::move(path)) {} internal_error(std::string message) : msg(std::move(message)) {}
template<typename... Args>
internal_error(const char* format, Args&&... args) : msg(microfmt::format(format, args...)) {}
const char* what() const noexcept override { const char* what() const noexcept override {
return msg.c_str(); return msg.c_str();
} }
@ -57,22 +59,18 @@ namespace detail {
const char* action = assert_actions[static_cast<std::underlying_type<assert_type>::type>(type)]; const char* action = assert_actions[static_cast<std::underlying_type<assert_type>::type>(type)];
const char* name = assert_names[static_cast<std::underlying_type<assert_type>::type>(type)]; const char* name = assert_names[static_cast<std::underlying_type<assert_type>::type>(type)];
if(message == "") { if(message == "") {
throw std::logic_error( throw internal_error(
microfmt::format(
"Cpptrace {} failed at {}:{}: {}\n" "Cpptrace {} failed at {}:{}: {}\n"
" %s(%s);\n", " %s(%s);\n",
action, location.file, location.line, signature, action, location.file, location.line, signature,
name, expression name, expression
)
); );
} else { } else {
throw std::logic_error( throw internal_error(
microfmt::format(
"Cpptrace {} failed at {}:{}: {}: {}\n" "Cpptrace {} failed at {}:{}: {}: {}\n"
" %s(%s);\n", " %s(%s);\n",
action, location.file, location.line, signature, message.c_str(), action, location.file, location.line, signature, message.c_str(),
name, expression name, expression
)
); );
} }
} }
@ -83,18 +81,14 @@ namespace detail {
const std::string& message = "" const std::string& message = ""
) { ) {
if(message == "") { if(message == "") {
throw std::logic_error( throw internal_error(
microfmt::format(
"Cpptrace panic {}:{}: {}\n", "Cpptrace panic {}:{}: {}\n",
location.file, location.line, signature location.file, location.line, signature
)
); );
} else { } else {
throw std::logic_error( throw internal_error(
microfmt::format(
"Cpptrace panic {}:{}: {}: {}\n", "Cpptrace panic {}:{}: {}: {}\n",
location.file, location.line, signature, message.c_str() location.file, location.line, signature, message.c_str()
)
); );
} }
} }

View File

@ -254,7 +254,7 @@ namespace microfmt {
} else if(*it == '{') { // try to parse variable width } else if(*it == '{') { // try to parse variable width
MICROFMT_ASSERT(peek() == '}'); MICROFMT_ASSERT(peek() == '}');
it += 2; it += 2;
MICROFMT_ASSERT(arg_i < N); MICROFMT_ASSERT(arg_i < args.size());
options.width = args[arg_i++].unwrap_int(); options.width = args[arg_i++].unwrap_int();
} }
// try to parse fill/base // try to parse fill/base
@ -277,7 +277,7 @@ namespace microfmt {
} }
} }
MICROFMT_ASSERT(*it == '}'); MICROFMT_ASSERT(*it == '}');
MICROFMT_ASSERT(arg_i < N); MICROFMT_ASSERT(arg_i < args.size());
args[arg_i++].write(str, options); args[arg_i++].write(str, options);
} }
} else if(*it == '}') { } else if(*it == '}') {

View File

@ -192,15 +192,6 @@ namespace detail {
static_assert(n_digits(11) == 2, "n_digits utility producing the wrong result"); static_assert(n_digits(11) == 2, "n_digits utility producing the wrong result");
static_assert(n_digits(1024) == 4, "n_digits utility producing the wrong result"); static_assert(n_digits(1024) == 4, "n_digits utility producing the wrong result");
// TODO: Re-evaluate use of off_t
template<typename T, typename std::enable_if<std::is_trivial<T>::value, int>::type = 0>
T load_bytes(std::FILE* object_file, off_t offset) {
T object;
VERIFY(std::fseek(object_file, offset, SEEK_SET) == 0, "fseek error");
VERIFY(std::fread(&object, sizeof(T), 1, object_file) == 1, "fread error");
return object;
}
struct nullopt_t {}; struct nullopt_t {};
static constexpr nullopt_t nullopt; static constexpr nullopt_t nullopt;
@ -309,45 +300,156 @@ namespace detail {
holds_value = false; holds_value = false;
} }
T& unwrap() & { NODISCARD T& unwrap() & {
if(!holds_value) { ASSERT(holds_value, "Optional does not contain a value");
throw std::runtime_error{"Optional does not contain a value"};
}
return uvalue; return uvalue;
} }
const T& unwrap() const & { NODISCARD const T& unwrap() const & {
if(!holds_value) { ASSERT(holds_value, "Optional does not contain a value");
throw std::runtime_error{"Optional does not contain a value"};
}
return uvalue; return uvalue;
} }
T&& unwrap() && { NODISCARD T&& unwrap() && {
if(!holds_value) { ASSERT(holds_value, "Optional does not contain a value");
throw std::runtime_error{"Optional does not contain a value"};
}
return std::move(uvalue); return std::move(uvalue);
} }
const T&& unwrap() const && { NODISCARD const T&& unwrap() const && {
if(!holds_value) { ASSERT(holds_value, "Optional does not contain a value");
throw std::runtime_error{"Optional does not contain a value"};
}
return std::move(uvalue); return std::move(uvalue);
} }
template<typename U> template<typename U>
T value_or(U&& default_value) const & { NODISCARD T value_or(U&& default_value) const & {
return holds_value ? uvalue : static_cast<T>(std::forward<U>(default_value)); return holds_value ? uvalue : static_cast<T>(std::forward<U>(default_value));
} }
template<typename U> template<typename U>
T value_or(U&& default_value) && { NODISCARD T value_or(U&& default_value) && {
return holds_value ? std::move(uvalue) : static_cast<T>(std::forward<U>(default_value)); return holds_value ? std::move(uvalue) : static_cast<T>(std::forward<U>(default_value));
} }
}; };
// TODO: Better dump error
// TODO: Explicit constructors for value, then add Ok()/Error() helpers
template<typename T, typename E, typename std::enable_if<!std::is_same<T, E>::value, int>::type = 0>
class Result {
// Not using a union because I don't want to have to deal with that
union {
T value_;
E error_;
};
enum class member { value, error };
member active;
public:
Result(T value) : value_(std::move(value)), active(member::value) {}
Result(E error) : error_(std::move(error)), active(member::error) {}
Result(Result&& other) : active(other.active) {
if(other.active == member::value) {
new (&value_) T(std::move(other.value_));
} else {
new (&error_) E(std::move(other.error_));
}
}
~Result() {
if(active == member::value) {
value_.~T();
} else {
error_.~E();
}
}
bool has_value() const {
return active == member::value;
}
bool is_error() const {
return active == member::error;
}
explicit operator bool() const {
return has_value();
}
NODISCARD optional<T> value() const & {
return has_value() ? value_ : nullopt;
}
NODISCARD optional<E> error() const & {
return is_error() ? error_ : nullopt;
}
NODISCARD optional<T> value() && {
return has_value() ? std::move(value_) : nullopt;
}
NODISCARD optional<E> error() && {
return is_error() ? std::move(error_) : nullopt;
}
NODISCARD T& unwrap_value() & {
ASSERT(has_value(), "Result does not contain a value");
return value_;
}
NODISCARD const T& unwrap_value() const & {
ASSERT(has_value(), "Result does not contain a value");
return value_;
}
NODISCARD T unwrap_value() && {
ASSERT(has_value(), "Result does not contain a value");
return std::move(value_);
}
NODISCARD E& unwrap_error() & {
ASSERT(is_error(), "Result does not contain an error");
return error_;
}
NODISCARD const E& unwrap_error() const & {
ASSERT(is_error(), "Result does not contain an error");
return error_;
}
NODISCARD E unwrap_error() && {
ASSERT(is_error(), "Result does not contain an error");
return std::move(error_);
}
template<typename U>
NODISCARD T value_or(U&& default_value) const & {
return has_value() ? value_ : static_cast<T>(std::forward<U>(default_value));
}
template<typename U>
NODISCARD T value_or(U&& default_value) && {
return has_value() ? std::move(value_) : static_cast<T>(std::forward<U>(default_value));
}
void drop_error() const {
if(is_error()) {
std::fprintf(stderr, "%s\n", unwrap_error().what());
}
}
};
struct monostate {};
// TODO: Re-evaluate use of off_t
template<typename T, typename std::enable_if<std::is_trivial<T>::value, int>::type = 0>
Result<T, internal_error> load_bytes(std::FILE* object_file, off_t offset) {
T object;
if(std::fseek(object_file, offset, SEEK_SET) != 0) {
return internal_error("fseek error");
}
if(std::fread(&object, sizeof(T), 1, object_file) != 1) {
return internal_error("fread error");
}
return object;
}
// shamelessly stolen from stackoverflow // shamelessly stolen from stackoverflow
inline bool directory_exists(const std::string& path) { inline bool directory_exists(const std::string& path) {
#if IS_WINDOWS #if IS_WINDOWS
@ -385,6 +487,8 @@ namespace detail {
return static_cast<U>(v); return static_cast<U>(v);
} }
// TODO: Rework some stuff here. Not sure deleters should be optional or moved.
// Also allow file_wrapper file = std::fopen(object_path.c_str(), "rb");
template< template<
typename T, typename T,
typename D typename D
@ -460,6 +564,8 @@ namespace detail {
fclose(ptr); fclose(ptr);
} }
} }
using file_wrapper = raii_wrapper<std::FILE*, void(*)(std::FILE*)>;
} }
} }